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Abstract 

 

This paper introduces a predictive traffic accident warning system tailored for smart city 
applications, aiming to improve urban safety through advanced data analysis and contextual 
reporting. The proposed system employs computationally efficient algorithms to predict the severity of 
traffic accidents with high accuracy while maintaining robust data privacy standards. By integrating 
real-time traffic data with external knowledge sources, it generates detailed, actionable reports and 
timely warnings, enabling proactive decision-making. The system’s design emphasizes effective task 
orchestration for seamless integration with existing urban infrastructure and optimized resource 
management. Evaluation results demonstrate the system’s high accuracy, scalability, and practical 
viability in smart city environments. Future research will focus on enhancing model efficiency, 
leveraging transfer learning for cross-domain adaptability, and deploying real-world implementations 
to vali- date the system’s performance. 
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I. INTRODUCTION 

By 2050, over two-thirds of the global 
population is projected to live in urban areas 
[1]. Urbanization, driven by population growth 
and migration towards cities, presents both 
opportunities and challenges such as 
overpopulation and traffic congestion [2]. 
Developing smart cities is a strategic approach 
to mitigate these challenges. A ”smart city” 
integrates information and communication 
technology to enhance urban living [3]. This 
concept emphasizes the interconnection of 
com- munity, people, and technology, aiming 
to prioritize human needs [4]. Urban mobility 
and transportation are significant challenges, 
with traffic congestion and accidents being 
major concerns. Annually, traffic accidents 
result in 1.35 million deaths globally, 
underscoring the critical need for effective 
accident prevention measures [5]. In large-
scale Internet of Things (IoT) ecosystems, 
efficient data processing is crucial. Centralized 
cloud servers face latency and security 
challenges for many application domains, 
making real-time processing difficult [6]. Edge 
computing aims to address these limitations by 
bringing computational resources closer to 
data sources, enabling timely processing and 
reducing latency [7, 8]. When edge computing 
is integrated with AI, known as EdgeAI, real- 
time urban decision-making could be 
facilitated [9, 10]. For example, models 
trained to predict road weather [11, 12] or 
traffic congestion can operate on edge devices 
located closer to the sites, providing immediate 
insights to traffic management systems. 
Nonetheless, due to the resource constraints of 
edge devices, certain computationally 
intensive tasks might still be offloaded to the 
cloud or other powerful nodes within the 
city network. That approach requires loosely-
coupled architectures and distributed 
algorithms [13, 14]. A lot of research proposes 
AI support for smart transportation systems 

from various perspectives. For example, 
Bortnikov et al. [15] detect accidents by 
training a 3D Convolutional Network on the 
data generated by a video game, Uma and 
Eswar’s [16] develop yawning detection of 
the drivers, Liu et al [17] concentrate on 
traffic flow prediction. However, the majority 
of related work focuses on a single type of AI 
module specifically developed for the task at 
hand, neglecting the capabilities of integrating 
their approach with other kinds of AI modules 
to create a more comprehensive support 
system. Additionally, response time is often 
overlooked in the assessment of related work, 
with a primary focus on accuracy. To our 
knowledge, no existing work incorporates 
multiple types of AI modules, raising 
questions about the integration and 
applicability of these separate modules into a 
cohesive framework. To address these gaps, 
we present our integrated system, containing 
two AI modules: first, Federated Learning 
(FL) [18] model to predict traffic accident 
occurrences and estimate severity and second, 
Generative Artificial intelligence (GenAI) to 
generate reports and warnings. Moreover, we 
utilized k0s, a lightweight Kubernetes 
distribution, for efficient task orchestration 
[19]. The task orchestration capabilities of k0s 
are crucial for seam- Lesly integrating the FL 
models and Retrieval-Augmented Generation 
(RAG) processes across multiple edge nodes. 
This enables automated deployment, scaling, 
and management of tasks, ensuring high 
availability, fault tolerance, and robust 
performance monitoring for our accident 
prevention warning system. The contributions 
of this work can be summarized as follows: 

1) We integrate two different kinds of AI 
modules into a coherent distributed 
system supporting accident prevention. 
We comprehensively evaluate this 
system and analyze the related 
challenges and opportunities. 
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2) We orchestrate tasks and monitor our 
system, examining its feasibility for real-
world smart city environments. 

The remainder of this article is organized as 
follows. sec related work discusses related 
work, while sec:design de- scribes the system 
design, and sec:implementation details the 
implementation. sec:eval then provides a 
detailed system evaluation and metrics, 
sec:discuss future discusses our findings, 
implications, and future research directions, 
and sec:conclusion concludes the work. 

 

II RELATED WORK 

A. Intelligent Transportation System in Smart 
City 

Intelligent Transportation Systems (ITS) are 
essential for the advancement of smart cities, 
with many recent studies dedicated to 
improving urban traffic management and 
safety. Here, we discuss several key works that 
have made significant contributions to this 
field. As an example, Hasan et al. [20] used 
the Google Distance Matrix and Directions 
APIs to provide advanced traffic jam alerts. 
Their Internet of Vehicles (IoV) module 
detects accidents and, with the assistance of 
the National Data Warehouse and a GPS 
module, notifies the nearest clinic. They 
developed an Android application for routing 
suggestions and employed an Arduino with a 
Sonar sensor, temperature sensor, gyroscope, 
piezo sensor, and GSM module as the core 
processing unit. Working on one of the most 
trendy applications, Bortnikov et al. [15] 
developed a 3D Convolutional Neural 
Network (CNN) to recognize accidents 
automatically. They trained the CNN using a 
custom video game to create accident scenes 
with various weather and lighting conditions, 
adding noise to diversify the data. The model 
was then tested on real traffic videos from 
YouTube. The novelty of this research lies in 
the use of video games to generate datasets, 

which are challenging to replicate in real-life 
scenarios. Yu et al. [21], with the same aim, 
proposed a Deep Spatio-Temporal Graph 
Convolutional Network for traffic accident 
prediction for Beijing traffic data, which was 
collected hourly over three months and 
includes accident records (time and location), 
vehicle speeds, meteorological conditions and 
points of interest. Recent research has 
considered informing other vehicles after 
detecting traffic accidents using IoT, IoV, and 
related technologies. Zhou et al. [22] proposed 
an accident detection algorithm based on 
spatiotemporal feature encoding with a 
multilayer neural network. This method first 
detects border frames as potential accident 
frames, then encodes the spatial relationships 
of detected objects to confirm an accident. The 
process involves using Histogram of Oriented 
Gradients and ordinal features initially, 
followed by CNN feature encoding and object 
relationship detection with a multilayer neural 
network. A trained Support Vector Machine 
then confirms the presence of an accident. 
Another approach involves efforts to reduce 
accidents before they occur is the work of 
Uma and Eswari [16], which developed a 
prototype using a Raspberry Pi and Pi Camera, 
along with sensors to monitor driver’s eye 
movements, detect yawning, and identify toxic 
gases and alcohol consumption. This system, 
employing the Haar Cascade algorithm for 
face detection and calculation of Eye Aspect 
Ratio and Mouth Aspect Ratio, estimates 
risk through these feature analysis. Besides, to 
identify accident hot spots, Le et al. [23] used 
Road Traffic Accident data over three years in 
Hanoi, Vietnam, to develop a GIS- based 
statistical analysis technique. This method 
assesses the influence of accident severity on 
temporal spatial patterns, identifying accident 
hotspots in relation to specific times of day 
and seasons. Beyond the mention in [24] of 
the potential service supports of cloud to 
autonomous vehicles applications, edge 
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computing is playing a pivotal role in 
reshaping traffic management in smart cities. 
Within this domain, Mohamed’s [25] and 
Zhou’s research groups [26] demonstrated 
substantial improvements in traffic 
management and reduced congestion durations 
through an edge-based model for real-time 
traffic data analysis. Besides, to achieve low 
latency and high pre- diction accuracy on 
vehicle identification at the edge, Wan et.al 
[27] have eliminated redundant frames from 
collected videos and presented an approach 
for real-time video processing. In a similar 
manner, Ke et al. [28] developed a multithread 
system for real-time detection of near-crash 
events in traffic, using video analytics on 
dashcams. Leveraging edge power, their 
system efficiently performs object detection 
and tracking directly from the video feeds on 
board. This approach involves removing 
irrelevant video to conserve bandwidth and 
storage while collecting diverse and valuable 
data for traffic safety such as road user type, 
vehicle trajectory, vehicle speed, brake 
switch, and throttle. The approach from Ke et 
al. demonstrates considerable promise for 
widespread application due to its low cost, 
real-time processing, high accuracy, and broad 
compatibility with various vehicles and 
camera types. Additionally, a recent work by 
Nguyen et al. [29] utilized Blockchain 
technology alongside edge computing to 
develop a reliable and transparent situational 
awareness system for autonomous vehicles. 
Their system broadcasts notifications and 
alternative route suggestions from the nearest 
edge station when congestion or accidents are 
detected by other vehicles, using various 
sensing data sources, including dashcam 
images and environmental factors like 
weather, temperature, and humidity. The use 
of Blockchain in their study ensures the data 
validity and integrity, as well as facilitates 
collaboration among different service 
providers. However, despite the recognized 

vision and applications, Zhou et al. [30] 
emphasized that employing edge computing in 
ITS always comes with inherent challenges 
related to sensor failure, and privacy protection 
concerns, which must be addressed for 
effective implementation. 

B. FL in ITS 

Building on the challenges identified by 
Zhou et al. [30] particularly concerning 
privacy protection, FL recently has been used 
more in smart cities. Amongst many applied 
domains within urban environments, the 
extension of FL applications in traffic 
systems is mostly leveraged for traffic 
monitoring and accident predictions. 
FedGRU - FL-based Gated Recurrent Unit 
(GRU) neural network [17] is one of the 
pioneering works for traffic flow prediction 
(TFP) with federated deep learning that 
comparably performs to other advanced 
competing methods without compromising 
the privacy and security of data. 
Additionally, as proved by experiments, the 
joint announcement protocol proposed in 
this paper helps in reducing communication 
overhead by 64.10% compared with 
centralized models, implicating the scalability 
of FedGRU for bigger networks. With the 
same motivation to address the privacy 
exposure risk of centralized machine learning, 
Qi et al. [31] presented a fully decentralized 
FL network, utilizing a Blockchain-based FL 
architecture as opposed to the conventional 
vanilla framework. The authors employed the 
local differential privacy technique to protect 
vehicle location and utilized GRU to achieve 
accurate TFP. Performance and security 
comparisons were also made among different 
machine learning models and with/without 
the use of blockchain. Qi et al. also conducted 
comparative analyses in terms of both 
performance and security, examining various 
machine learning models and contrasting 
scenarios with and without blockchain 
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implementation. Concerning the monitoring 
of traffic congestion, typical systems begin by 
detecting vehicles and subsequently 
estimating traffic flow density. In their 
research, Xu et al. [32] employed remote 
sensing images for this purpose, while 
Chougule et al. [33] continuously used the 
estimated traffic density from intersection-
captured images to dynamically adjust the 
duration of green light and schedule the 
timing of signals across all lanes. As one of 
the highlights in the narrow field of applying 
FL on ITS: risk detection, Yuan et al. [34] 
introduced FedRD, a framework combining 
edge-cloud computing, FL, and differential 
privacy techniques for intelligent road 
damage detection and warning. The 
framework not only improves detection 
performance and coverage area but also 
addresses privacy concerns through 
Individualized Differential Privacy with 
pixelization technique. Comprehensive 
evaluations demonstrate FedRD’s capability 
to deliver high detection accuracy and wider 
coverage while preserving user privacy, even 
in scenarios where edge devices have limited 
data. This groundbreaking effectiveness sets a 
new benchmark in the field. 

C. GenAI in ITS 

Recently, GenAI has garnered significant 
attention in several applications, including 
ITS, due to its advantages and flexibility. By 
analyzing data from various sources, such as 
roadside sensors, vehicles, and traffic signals, 
GenAI enhances urban operations by detecting 
patterns, identifying trends, and providing 
accurate predictions and advice. With the 
leverage of natural language processing, 
GenAI can present these predictions in human-
understandable language, making these 
technologies more accessible and practical for 
smart services [35]. See prior works [36, 37] 
for examples of how GenAI integrated into 
many services within cities. As another 

example in ITS, Impedovo et al. [38] propose 
a deep generative model to predict weekday 
vehicular traffic flow to prevent accidents in 
the most critical areas and improve 
continuity by reducing traffic. More notably, 
RAG, first introduced by Lewis et al. in 2020 
[39]l, stood out as a part of this GenAI 
world, representing a distinct approach to 
generating text, informed reasoning, and 
supporting decision-making. Its application in 
ITS is not popular, however, there are some 
notable works. For instance, Dai et al. [40] 
integrated RAG into autonomous driving 
systems to enhance decision- making 
processes. According to the authors, the use of 
RAG in their work addresses the problem of 
impractical generated content from the 
mainstream foundation models nowadays, 
such as GPT4 or LLaMa. It helps these 
models enhance the reliability of their outputs 
during the generation phase by dynamically 
retrieving accurate contextual information 
from outer databases (e.g. updated traffic rules, 
driving experiences, or human preference). 
Similarly, Ding et al. [41] utilized RAG for 
more controlled generation of traffic scenarios. 
Specifically, RealGen [41] synthesizes new 
scenarios by combining behaviors from 
multiple retrieved examples in a gradient free 
manner, using templates or tagged scenarios. 
This in-context learning framework provides 
versatile generative capabilities, including 
scenario editing, behavior composition, and 
the creation of critical scenarios, thus 
enhancing the adaptability and precision of 
synthetic data generation for various 
applications. Most recently, in his Master’s 
thesis, Mohanan [42] evaluated eight 
embedding RAG models for a chatbot tailored 
to Indian Motor Vehicle Law. As can be seen, 
prior research typically focuses on a single 
module, such as risk estimation or warning 
generation, limiting possible support for ITS. 
This raises an open question: ”Is it possible to 
integrate all diverse components into a 
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cohesive and comprehensive ITS framework?” 
This is where our work positions. 

II. SYSTEM DESIGN 

This article presents a system for predicting 
and preventing traffic accidents. It is capable 

of predicting the possible accidents based on 
the traffic conditions and other available data, 
and provides detailed textual comments to the 
user explaining the grounds leading to  

 

 
Fig. 1. System workflow. This figure illustrates the key components of the core system, Federated Learning (FL) 
and Retrieval-Augmented Generation (RAG). Using preprocessed weather and road traffic sensors, FL predicts accident 
severity. Within the RAG framework, the Semantic Meaning Model creates embeddings for documents and queries. The 
Similarity Search Library selects the most relevant document chunks based on similarity. Finally, the Warning Generation 
Model generates a traffic accident report that incorporates data analysis and future recommendations. 

 

such estimation. Figure 1 illustrates the 
overall system flow, highlighting the 
interplay between the key components: 
Federated Learning (FL) and Retrieval- 
Augmented Generation (RAG). This 
integrated system combines the strengths of 
RAG and FL to ensure high- quality outputs 
while maintaining data privacy and relevance. 
FL enhances the accident severity prediction 
model while maintaining data privacy. The 
RAG system uses integration between the 
warning generation model and the knowledge 
retrieval model to enhance the generation 
process with relevant external data, improving 
context and accuracy. Our training approach 
starts from data preprocessing. The 
preprocessed dataset is then used to train the 
FL model for traffic accident risk estimation. 
The predictions, along with the sensors’ real- 
time data, are utilized as input for the RAG 
model. The RAG model integrates advanced  

retrieval mechanisms with state- of-the-art 
language generation capabilities to produce 
detailed warnings and reports for traffic 
accidents. To efficiently man- age and deploy 
these components, we use a task orchestration 
tool. This tool ensures seamless integration 
and coordination among the various models, 
automates deployment, and scales the system 
as needed. Additionally, it facilitates robust 
performance monitoring, ensuring high 
availability and fault tolerance across the 
system. 

A. Dataset 

This study uses US Accidents (2016-2023) 
dataset 1 [43] from Kaggle, distributed under 
CC BY-NC-SA 4.0 license. This dataset 
comprises a vast collection of over 7.7 
million (7,728,394) traffic accident records, 
covering 49 states of the USA from February 
2016 to March 2023. The accident data were 
collected using multiple APIs that provide 
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streaming traffic incident data captured by 
various entities, including the US and state 
departments of transportation, law 
enforcement agencies, traffic cameras, and 
traffic sensors within the road networks. The 
data includes detailed information on accident 
severity, location, time, and weather 
conditions. This dataset was utilized to train 
the FL models for traffic accident prediction. 

B. Federated Learning 

Our application relies on FL model for 
accident risk estimation. FL was selected 
based on two primary considerations: data 
privacy and collaborative enhancement. 

1) Privacy: Addressing privacy concerns, 
vehicles in a real scenario do not transmit 
raw data, which could potentially reveal 
sensitive information. Instead, only 
model parameters will be sent, ensuring 
that individual data remains secure and 
private. This cannot be done with 
traditional centralized learning when all 
data need to be sent to a central server for 
training. 

2) Collaboration: When a vehicle updates 
and shares its model parameters, it 
contributes to the overall learning 
process. This collective effort leads to an 
improvement in the overall model’s 
performance, as it can learn from a 
wide range of diverse and localized 
inputs. The shared knowledge enables 
more accurate and robust risk estimation. 

The training data features provide a detailed 
view of accident records, including the 
specifics of the accidents, the geographic 
locations, the prevailing weather conditions at 
the time of the accidents, and various 
environmental and contextual factors that may 
be relevant to analyzing the accidents. In a 
real scenario, the vehicle’s onboard computing 
system uses these inputs to continuously 
update its local model, learning from real data. 

Once the training is done, the model 
parameters will be sent to the nearby edge 
server. The server, after receiving a sufficient 
amount of models will start doing the 
aggregation to get the global model, which is 
then sent back to the participating vehicles. 
When this whole process is complete, we 
finish one communication round and continue 
to the next round. 
 
C. Retrieval-Augmented Generation 

RAG combines an information retrieval 
component with a text generator model to 
provide situational information and guidance 
[44]. In the ITS context, RAG can integrate 
various external data sources to analyze and 
report traffic accidents, identifying risk 
factors and details [45]. This makes the 
system more dynamic and adaptable to new 
information. In our system, see Figure 1, 
RAG provides textual accident warnings to 
the end user, along with explanations of 
how the estimates were derived. Knowledge 
retrieval model It is designed to find the most 
relevant information from an external 
knowledge base in response to the query. This 
enhances FL model output and sensor data 
with relevant information. We use 
SentenceTransformers2 as a retrieval model 
based on similarity search. Warning 
generation model: It is designed to generate 
new content using language models. It uses 
the retrieved information by the retrieval 
model and FL-output details to generate a 
response. For our system, we use gpt- 3.5- 
turbo-06133 to create contextually relevant 
warnings and detailed reports. The accident 
report includes the severity of the accident, 
the location and traffic control procedures, 
and guidance and actions. 

C Task Orchestration and Monitoring 

Effective resource management and device 
health monitoring are essential for enhancing 
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the responsiveness of smart city services. This 
requires comprehensive system monitoring 
that spans from edge devices to the cloud. 
The deployment of applications on edge 
devices necessitates advanced task 
orchestration platforms, which must be 
carefully selected based on specific 
requirements. Given that edge devices 
typically have limited resources, the chosen 
tool must operate smoothly under such 
constraints. For the proposed system, k0s4 has 
been selected. We selected k0s because of its 
minimal resource consumption on edge 
devices and its straightforward and rapid 
implementation process, supported by 
comprehensive docu- mentation and active 
developer forums. It typically operates with as 
little as 1 CPU and 512 MB of RAM on each 
controller node and 1 GB of RAM on each 
worker node, which aligns well with the 
capabilities of edge devices. However, the 
minimum requirements increase when the 
number of worker nodes is increased. 
Additionally, numerous monitoring options 
compatible with k0s are available. k0s is 
packaged as a single, self-extracting binary 
which embeds Kubernetes binaries. It has 
many benefits, such as it has no OS level 
dependencies and everything can be, and is, 
statically compiled. 

III. SYSTEM IMPLEMENTATION 

A. Risk Estimation with FL 

1) Preprocessing: Preprocessing Phase: 
The preprocessing phase for our system 
includes a series of essential data preparation 
steps to ensure the quality of the dataset for 
further analysis. 

1) Data Cleaning: Duplicated and missing 
values were removed. 

2) Feature Engineering: To enhance the 
informativeness of the dataset, a new 
feature called Comfort Index is created as 
defined in Equation (1). 

Comfort Index = (Temperature − 32) 
xHumidity/100   (1) 

3) Data Resampling: To address the 
imbalance issue, both random 
oversampling and under sampling were 
applied to ensure equal label distribution. 

4) Data Transformation: Transformation 
was conducted based on feature type: 

• Categorical Data: One-hot encoding 
was applied to categorical columns, 
excluding Street, State, and the target 
label Severity. 

• Boolean Data: Columns with two 
distinct values were binarized, 
converting them to 0 and 1. 

• Numeric Data: Numeric columns 
were left un- changed, preserving their 
original values. 

5) Standardization: The dataset was 
standardized using Standard Scaler to ensure 
consistent feature scales and values within a 
specific range. 
 
FL Training and Prediction: To simulate a 
real-world scenario using our chosen dataset, 
we distributed the data across several nodes 
and established certain assumptions. This 
section will elaborate on those details. 
Distribution: The data is divided into five 
equal parts, corresponding to five nodes in 
the system. We also make sure the number 
of samples of each label is distributed equally 
among clients. Model Training: Each client 
trains its local model, consisting of three fully 
connected layers. Training specifications 
include the use of the cross-entropy loss 
function, Adam optimizer with a learning rate 
of 1e-3, and a batch size of 32. After ten 
training epochs, the locally trained models are 
aggregated by the server into a global model, 
and the global parameters are saved at each 
checkpoint, here at each communication round, 
before being sent back to the participants for 
training in the next round. The FL training 
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process concludes after ten communication 
rounds. At this stage, various model 
architectures, encompassing differing layer 
counts and hyperparameters, were evaluated 
over 50 communication rounds to observe the 
trend and convergence in via its performance. 
The selected model outperformed alternatives; 
models with reduced layers demonstrated 
inferior outcomes (3- 4%), while 
configurations with additional layers, despite a 
3% accuracy improvement, incurred prolonged 
training duration and converged to local, rather 
than global, optima. See Table 1 for details. 

 
TABLE I COMPARISON OF RISK ESTIMATION MODELS: 

ACCURACY AND TRAINING TIME 
 

Model Simple Chosen Complex 
Accuracy (%) 67.09 71.15 74.42 

Training Time (hours) 3.461 4.042 5.603 
MAE (%) 32.91 28.85 25.58 

 

B. Warning Generation with RAG 

Using the RAG model, we retrieve text 
passages using an input sequence. During the 
generation of the target sequence, we include 
these passages as additional context. Our 
model leverages two components, which are 
implemented in LangChain5. A retriever that 
retrieves relevant text snippets in response to 
a user’s query or prompt based on knowledge 
source which is uploaded using built-in 
document loader from LangChain. In our 
system, we rely on the US traffic accident 
database as an external knowledge source, 
containing a comprehensive analysis of US 
traffic accident data [46]. This report provides 
insight into preventive measures and policy 
recommendations for decreasing traffic 
accidents in the US based on detailed 
analyses by state, time, and contributing 
factors such as weather. The retrieval process 
begins with loading documents using a tool 
in LangChain. This process is enhanced by a 
splitter tool, also integrated into LangChain, 
designed to segment extensive texts into 
smaller chunks based on a specified chunk 
size by examining characters recursively 

which is crucial for the efficient handling of 
large textual data. For the creation of text 
embeddings, we employ Hug- ging Face 
Embeddings, a specialized embedding 
model from the Hugging Face library6 within 
LangChain. This model transforms the 
segmented text chunks into numerical 
vectors, facilitating their computational 
handling To store these embed- ding vectors 
in a vector store, we utilize the FAISS 
library7 , a robust vector database. It enables 
effective similarity search by identifying text 
chunk vectors most similar to the question 
vector. This process is vital to determine 
which portions of the knowledge source are 
most pertinent to the input query. This is for 
later retrieval at query time based on the k 
argument which finds the top k most relevant 
text chunk vectors for each query. Table 2 
summarizes the RAG parameters used. The 
generator creates a more detailed, factual, and 
relevant response based on the original input 
and retrieved documents. The original input 
represents the severity of an accident, derived 
from the FL output and complemented by 
sensor real- time data. For the generation of 
coherent and contextually relevant text, the 
original input and the retrieved documents are 
fed into gpt-3.5- turbo-0613, a sophisticated 
pre-trained language model. Based on the 
content of these documents, the model 
generates coherent and contextually relevant 
text grounded in real-world information. 
Figure 2 illustrates an example of a traffic 
accident report generated by RAG. 

 
TABLE II  SUMMARY OF RAG PARAMETERS USED 

 
Parameter Value 
Text Splitter Type RecursiveCharacterTextSplitter 
Chat Model ChatOpenAI 
ChatOpenAI Model 
Name 

gpt-3.5-turbo-0613 

Vector Store FAISS 
Embeddings Type HuggingFaceEmbeddings 
Embeddings Model 
Name 

sentence-transformers/all-mpnet-
base-v2 

Search Type Similarity 
Chunk Size 2000 
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C. Task Orchestration and Monitoring 

As discussed in Sub-section 3.4 we opted 
for k0S, which is ideal for our needs and 
simple in implementation. We used Lens 
IDE8 which is a Kubernetes IDE to manage 
the cluster and monitoring of the whole 
system. It allows for comprehensive oversight 
of nodes, pods, and resource monitoring. 
Monitoring involves tracking the usage of 
CPU, memory, storage, and network 
bandwidth, and monitoring device safety and 
functionality to detect any potential problem. 
We containerized our application using 
Docker9 and deployed our application using 
Lens IDE and k0s task orchestration tool. We 
used Cluster metrics in the Lens IDE to 
monitor the resources efficiently 

IV. SYSTEM EVALUATION 

To assess the system’s performance, several 
key metrics were employed. We want to 
ensure that all the components work perfectly 
both independently and in the integrated 
system. First, we monitored the accuracy of 
the FL model for risk estimation, assessing its 
ability to predict traffic accident severity. This 
evaluation utilized the dataset for training the 
model. Additionally, the quality and 
relevance of warnings 
TABLE III TRAFFIC ACCIDENT DATA ON US HIGHWAY 22, NJ 

 
Parameter Value 
Street US Highway 22 
State NJ 
Start Latitude 40.65562 
Start Longitude -74.40149 
Crossing False 
Give Way False 
Junction False 
No Exit False 
Railway False 
Roundabout False 
Station True 
Stop False 
Traffic Calming False 
Traffic Signal False 
Distance (mi) 0.167 
Temperature (°F) 56.09 
Wind Chill (°F) 72.98 
Humidity (%) 42.97 
Pressure (in) 29.59 
Visibility (mi) 9.99 

Wind Direction NNW 
Wind Speed (mph) 9.19 
Precipitation (in) 0.0016 
Weather Condition Fair 
Sunrise/Sunset Night 
Comfort Index 10.35 
Severity 2 

 

and reports generated by the RAG model 
were assessed. The system’s prompt 
responsiveness was also tested, particularly 
how quickly it can generate alerts and 
warnings based on incoming data. 
Furthermore, the resource management aspect 
was evaluated to ensure that the system’s 
resource usage is optimized and well-
maintained. The developed system was 
deployed and tested on a real cluster of three 
nodes with k0s equipped with the monitoring 
application. 

 
A. Risk Estimation Evaluation 

1) Accuracy: We monitor the training 
process of the FL model in terms of accuracy, 
loss, and  

 
Fig. 2. Risk estimation training accuracy (top) and loss 
(bottom) 

 

convergence. The training for 50 
communication rounds with 5 training 
clients takes up to 4.042 hours. Figure 3 
plots the training accuracy in the upper 
graph and the training loss in the lower 
graph. The model demonstrates 
convergence approximately by round 30 at 
71.15%, as depicted in the upper plot. 
Initially, model accuracy exhibits an upward 
trend from round 0 to 30, albeit with 
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fluctuations observed around rounds 15-17 
and 21. Subsequently, after round 30, the 
risk estimation model appears to have reached 
a plateau in accuracy, becoming converged. This 
is also reflected in the lower graph of training 
loss. It is, however, possible for low power-
resource devices to terminate the training 

process at an earlier stage, such as after round 10 
or 20, with negligible tradeoffs in accuracy. 

Fig. 3. Total latency trends of risk estimation 

 
2) Total latency trends: The bar graph 

(referred to Fig. 4) depicting the total latency 
for predictions reveals a clear trend: as the 
number of inputs processed simultaneously 
increases, so does the time required for 
prediction. Starting from a swift 0.3931 
seconds for a single input, the latency 
moderately rises for batches of 10 and 100 
inputs, reaching 0.4062 seconds, suggesting 
the model handles small to moderate increases 
in input size efficiently. However, as input 
sizes increase to 1,000 and 10,000, the total 
latency grows more substantially, hitting 
0.4487 seconds for 10,000 inputs. This 
increment continues, even more sharply, with 
the model taking 0.9463 seconds to predict 
outcomes for 100,000 inputs concurrently. 
Overall, this evaluation outcome underscores 
the FL model’s scalability with a total latency, 
not only for small input batches but also 
optimized for larger ones. Nevertheless, it 
should be noted that the measured time can be 
different among different working devices. 

B. Accident Warning Report Evaluation 

Evaluated by RAG, we have used correctness, 
relevance, and faithfulness as criteria to assess 

LLM outputs10. We used gpt- 3.5-turbo-0613 
for the evaluation task to contextually analyze 
and interpret generated reports according to 
the criteria. Cor- rectness is based on the 
LLM’s internal knowledge. However, given 
the potential unreliability of the LLM’s 
knowledge base, we enhanced the evaluation 
method by incorporating reference labels. This 
provides an external benchmark for 
correctness. The evaluation process produces a 

dictionary containing key metrics: “score”, a 
binary integer from 0 to 1 indicating 
compliance with the criteria, “value”, which is 
either ”Y” (Yes) or ”N” (No) based on the 
score, and “reasoning”, which outlines the 
LLM’s chain of thought. Relevance evaluates 
the relevance and focus of the generated 
answer in relation to the provided prompt. 
Faithfulness assesses the factual consistency of 
the generated answer against the given context 
and reference documents. Using this approach, 
we ensure not only that the generated content 
meets the prompt’s specific requirements. It 
also remains true to the factual information 
provided in the reference material. Figure 5 
illustrates an example of RAG output 
evaluation. Based on correctness, relevance, 
and faith- fulness criteria, the evaluation shows 
that the output accurately represents an actual 
quote. Throughout the evaluation output, all 
necessary elements are addressed in a 
comprehensive, well- structured, and well-
written manner. Based on the evaluation 
output, the response summarizes accident 
data and provides a comprehensive analysis 
of weather conditions at the time of the 
accident, including visibility and severity. 
Additionally, it provides recommendations for 
preventing accidents in the future relevant to 
the reference. 

C. Task Orchestration and Monitoring 

We utilized a simplified demonstration 
setup comprising one controller node and two 
worker nodes to test the deployment of the 
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system to the distributed environment. 
The technical characteristics of our system 
are as follows: The controller node is 
equipped with an Intel Core i7- 6700HQ CPU, 

an NVIDIA GeForce GTX  
 
                         Fig. 4. Lens IDE logs output 
 

960M GPU, and 16 GB of RAM. One of the 
worker nodes is identical to the controller 
node, featuring an Intel Core i7-6700HQ 
CPU, an NVIDIA GeForce GTX 960M GPU, 
and 16 GB of RAM. The other worker node is 
equipped with an Intel Core i5-1135G7 CPU 
and 16 GB of RAM. The system was 
successfully deployed and operated as 
expected, effectively generating warnings in 
response to simulated input data. 
Additionally, we employed Lens IDE to 
monitor data outputs and to oversee the 
resource usage on the controller node. A 
screenshot of the Lens IDE is provided in 
Figure 6 to demonstrate how the cluster is 
controlled. 

V. DISCUSSION AND FUTURE WORK 

The development and integration of FL and 
RAG into an ITS service presents several key 
findings and areas for further research. Our 
FL model demonstrated good performance in 
predicting traffic accident severity, achieving 
a convergence point after approximately 30 
communication rounds. This suggests that FL 
can effectively utilize distributed data for 
predictions while maintaining data privacy. 
Additionally, the scalability of the FL model 

was evident from the total latency 
evaluations, which showed reasonable 
prediction times even with increasing input 
sizes, indicating the model’s applicability in 
real scenarios. The RAG model generated 
detailed and con- textually relevant reports 
and warnings based on simulated real time 
inputs. This was validated through 
evaluations focusing on correctness, 
relevance, and faithfulness. The integration of 
real-time data and FL with external knowledge 
sources ensured that the generated content 
was not only accurate but also practical for 
end-users, such as traffic management 
authorities. The use of k0s for task 
orchestration proved to be effective, enabling 
seamless integration and management of 
various system components. The monitoring 
capabilities provided by Lens IDE ensured 
the system’s robustness and allowed for 
efficient resource management. Testing on a 
simulated cluster confirmed the system’s 
reliability and scalability. While our system 
shows promising results, several areas 
warrant further investigation and 
development. Future work should focus on 
strengthening privacy preserving techniques 
within the FL framework. In our design of the 
FL model, we prioritized simplicity and 
efficiency to predict accident severity. This 
approach was intended to minimize the 
computational load. For future work, it would 
be advantageous to enhance the FL model by 
exploring other lightweight models. This 
could potentially improve the accuracy while 
maintaining the model’s efficiency. Exploring 
the feasibility of using transfer learning 
methods to transfer knowledge gained about 
each state or district to other districts or states 
can be beneficial. To directly address the 
reviewer's concern that the reported accuracy 
of the predictive model (71.15%) is low, we 
acknowledge that while this figure 
demonstrates good convergence and the 
viability of the FL approach for distributed 
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prediction, there is a clear and defined path 
for further significant enhancement. 
Achieving a higher accuracy is critical for a 
system designed to meet the practical and 
reliability standards for real-world urban 
safety applications. We will focus on the 
following strategies in future iterations to boost 
the FL model's performance: 

 Exploring Advanced Lightweight 
Models: We will go beyond the 
current three fully connected layers by 
rigorously exploring other lightweight 
model architectures better suited for 
complex time-series and sensor data 
within the resource constraints of edge 
devices. This will involve testing 
models that integrate recurrent units or 
other sophisticated, yet efficient, deep 
learning structures such as those 
demonstrated in similar vehicular 
traffic flow prediction research [47].  

 Optimizing Hyperparameters and 
Communication: We will conduct a 
more exhaustive search to identify the 
optimal configuration for 
hyperparameters (such as learning rate 
and batch size) and the number of 
communication rounds. The goal is to 
maximize accuracy beyond the current 
convergence point of 71.15% without 
incurring the prolonged training 
duration associated with the initial 
Complex model configuration (which 
achieved 74.42% accuracy but took 
5.603 hours to train) 

 Refining Feature Engineering and 
Data Sourcing: We plan to refine the 
preprocessing phase with advanced 
feature engineering that incorporates 
deep domain knowledge, such as 
explicitly including temporal-spatial 
features like proximity to peak hours or 
specific road geometry characteristics. 
We will also explore the use of more 

granular data from additional real-time 
sources to enrich the model's inputs, 
following best practices for leveraging 
heterogeneous sparse data in risk 
prediction [48]. 

By implementing these targeted 
enhancements, the next iteration will be 
designed to significantly improve the 
predictive accuracy, thereby creating a system 
that is not only conceptually sound but also 
practically viable and highly reliable for 
enhancing urban safety. 

Developing user-friendly interfaces for traffic 
management authorities and end-users will be 
crucial for effective system adoption. This 
involves designing intuitive dashboards and 
visualization tools to present predictions and 
warnings in an accessible manner. 
Implementing and testing the system in real-
world smart city environments will provide 
valuable insights into its performance and 
scalability. Collaborations with city authorities 
can facilitate this process and help refine the 
system based on practical feedback. 

 
VI. CONCLUSION 

This paper presents a service in smart 
cities integrating FL and RAG to enhance 
traffic risk prediction and manage- ment in 
smart cities. Our findings demonstrate the 
system’s accuracy, efficiency, and potential 
for real-world applications. The FL model 
achieved a good predictive performance while 
preserving data privacy. The RAG model 
produced detailed and relevant reports, aiding 
in effective traffic management. Task 
orchestration using k0s ensured seamless 
integration and robust performance 
monitoring. Future work will focus on 
enhancing privacy, scalability, and real world 
testing, aiming for broader deployment and 
integration. Our system offers a promising 
approach to addressing urban safety 
challenges, contributing to the development of 
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smarter and safer cities. 
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