
 
 

Current Natural Sciences & Engineering 2 (4) 2025 
 

760 
 

                                    
                                    

 

 
 
 

Accelerating Julia Script Execution via Persistent JIT Warm-Up  
                  

Revanth Reddy Pasula 

Department of Computer Science, Wichita State University 
Wichita, United States 

 
Received date:01/07/2025, Acceptance date: 11/09/2025 

 
 

DOI: http://doi.org/10.63015/3ai-2469.2.4 
 

*Corresponding Author: revanthreddy210799@gmail.com  
 

Abstract 

Julia’s just-in-time compilation provides good execution performance but carries a considerable 
startup latency, commonly known as the “time-to-first-execution” penalty. This overhead greatly 
diminishes the performance of brief-running routines and interactive pipelines. In this work, we 
present a new persistent daemon-client system designed to solve Julia’s startup latency problem 
by pre-compiling and storing frequently used libraries. The daemon process continuously runs in 
the background to do the heavy lifting of compilation so that the subsequent Julia routines (clients) 
may use the precompiled code rather than compiling it all over again. Our design and 
implementation of this system are presented, and performance results demonstrate up to a 98% 
improvement in execution latency for routines that use a high load of external packages. Such a 
technique greatly enhances the use of Julia in rapid prototype work, data analysis tasks, and other 
use cases in which startup must be quick. In this revised version, we describe the latency problem 
and our solution using clearer terms: time-to-first-execution (TTFX), native-code caching, and 
inter-process transport. We also quantify the effects with average benchmarks and ensure 
reproducibility. 

Keywords— Julia; just-in-time compilation; startup cost; daemon-client system; performance 
optimization; first-exec 

 

 

 2025 ©Vigyan Vardhan Blessed 
 

Current Natural Sciences & Engineering 
Volume 2, Issue 4, 2025, 760-770 

 



 
 

Current Natural Sciences & Engineering 2 (4) 2025 
 

761 
 

I. Introduction 
Julia is an open-source, high-level 
programming language designed to close the 
gap between ease of use for users and high 
performance. While conventional scripting 
languages like Python or R prefer ease of use 
but forgo speed in the process, Julia harnesses 
the power of just-in-time (JIT) compilation to 
provide performance equivalent to low-level 
languages C and C++ at runtime[1]. The 
combination of ease and speed makes Julia 
particularly compelling for scientific 
computation, data analysis, and machine 
learning when both productivity for 
developers and execution performance 
matter. 

In spite of these benefits, Julia has a 
significant startup latency, also known as the 
time-to-first-execution (TTFX) problem. 
This is because Julia compiles functions at 
runtime instead of depending on pre-
compiled executables. Consequently, even 
very simple Julia programs can have 
appreciable latency on first execution, as the 
Julia runtime has to compile the required 
code. In interactive usage or in the case of 
very brief-lived scripts, the cost of 
compilation dominates execution duration to 
the detriment of the speed of development 
cycles as well as efficiency in the case of 
quick prototyping. Other languages such as 
Python tend to bypass these latencies using 
pre-compiled libraries but since Julia 
prioritizes runtime optimization, each new 
session tends to redo work in compilation 
from scratch. 

To solve this problem, we suggest a daemon-
client architecture that amortizes the cost of 
compilation in multiple runs. The 
fundamental concept is to have an always-
running Julia daemon process pre-load and 
pre-compile frequently used packages. User 
scripts are subsequently run by a light client 
that communicates with the daemon. Since 

the daemon persists in memory with a 
“warm” JIT compiler, subsequent Julia 
scripts are able to skip unnecessary 
compilation and initialization steps. In 
essence, the framework sacrifices added 
memory usage (for daemon persistence) in 
exchange for dramatically reduced startup 
time upon each script execution. The 
remainder of the paper discusses related work 
to minimize startup latency, reviews the 
construction of our framework, discusses 
experimental results, and concludes the 
impact of this technique on the usability of 
Julia. 

II. Related Work 
JIT compilation is core to Julia's performance 
and design but tends to incur runtime latency 
when the program starts up. Existing studies 
have examined the problem of dynamic 
compilation in high-level languages and the 
techniques to minimize the latency. For 
instance, Innes et al.[2] discuss the problem 
with JIT compilation in dynamic languages 
and the related latency. Nielsen et al.[4] also 
outline techniques to speed up the startup of 
scripting language interpreters. These papers 
point out that although JIT might optimize for 
long-running computations, it might slow 
down even for computations that are very 
short. 

Persistent daemon processes have also been 
explored in other fields as a mechanism for 
bypassing the startup costs of repeated 
initialization. Dawson-Haggerty et al.[3] 
discuss an approach in which a running 
server process pre-compiles frequently-used 
libraries to save startup time. The philosophy 
involved in this case mirrors that found in 
persistent service-oriented architectures in 
the field of web technology (for example, 
FastCGI), in which having a server running 
saves the cost of forking a new process for 
each request. Such strategies in other areas 
support the concept that the reuse of a pre-



 
 

Current Natural Sciences & Engineering 2 (4) 2025 
 

762 
 

initialized execution context saves a 
considerable amount of setup time[5]. 

In the case of Julia, our work contributes to 
the increasing attention for JIT warm-up 
strategies and persistent process models to 
enhance interactive performance. 
JuliaDaemon (our system, presented in this 
paper) extends the thinking in existing tools 
and proposals in the Julia ecosystem for 
addressing the TTFX problem. There have 
also been some explorations of leveraging 
light client programs in other languages to 
control a persistent Julia process. For 
example, Molina’s Juliaclient in the Nim 
language was a compiled client that was 
intended to communicate with a long-running 
Julia server in order to avoid the cost of 
starting the entire Julia runtime for every 
use[6]. 

Lastly, it should be appreciated that the 
incentive of our approach comes in part 
through the needs of popular Julia libraries. 
Libraries that are data-centric in nature like 
DataFrames.jl[7] and CSV.jl[8] have very 
powerful capabilities but increase the startup 
cost of a Julia session by a considerable 
amount. Libraries for better logging and 
debugging (e.g., Crayons.jl[9], 
LoggingExtras.jl[10]) are also utilized for 
enhancing the developer experience. The 
extensive usage of these packages implies 
that a solution that caches their compiled 
form has generalizability. Our approach of a 
persistent daemon serves this by keeping 
these libraries in the loaded and compiled 
state across multiple invocations. The recent 
interest in such JIT warm-up techniques 
highlights the significance of our 
contribution towards enhancing Julia’s 
interactive use. 

III. Proposed Method 
The solution the authors propose involves a 
daemon-client system that has a continuously 
running Julia process in the background to 

accept execution requests. The system has 
two parts: (1) a daemon server that starts only 
once but remains permanently activated in 
the background; it preloads chosen libraries 
and has a warm JIT-compiled status; and (2) 
a client interface that forwards user 
commands or scripts to the daemon to run. 
With this system, all new scripts have access 
to use the already-initialized environment, 
which greatly minimizes their startup times. 

Framework Deployment: We deployed the 
daemon–client system using the open-source 
package DaemonMode.jl[15] hosted in 
Julia’s package repository. It is very easy to 
install the framework. First of all, the 
DaemonMode package is installed using 
Julia’s package manager: 

 

 

Listing 1. Installing the DaemonMode 
package 

Next, a dedicated Julia daemon process is 
started (for example, as a separate terminal 
process). This daemon preloads libraries and 
listens for incoming execution requests. The 
daemon can be launched with an invocation 
like: 

Listing 2. Starting the Julia daemon server 
process 

In the above command, -t auto instructs Julia 
to use all threads that are available to it, and 
the serve() function (supplied by 
DaemonMode) starts the daemon service. For 
ease of use, you can encase this command 
within a shell script or alias (for example, an 
alias called juliaserver) in order to readily 
start the background server as desired. 

Once the daemon has started, user scripts are 
run using a light-weight client command 
rather than invoking Julia directly. For 

julia> using Pkg 

julia> Pkg.add("DaemonMode") 

$ julia -t auto -e ’using DaemonMode; 



 
 

Current Natural Sciences & Engineering 2 (4) 2025 
 

763 
 

instance, rather than using the typical 
command to run a Julia script: 

 

(Typical direct execution of a Julia script) 

the user would invoke: 

 

Listing 3. Executing a Julia script via the 
daemon client 

Here, jclient is a simple wrapper (which can 
be a bash script or function) that forwards the 
script to the waiting daemon. One way to 
implement jclient is as follows: 

 

 

Listing 4. Shell wrapper for the Julia client 
execution 

This client script executes the specified Julia 
script (and any command-line arguments) 
using DaemonMode’s runargs() function. 
Behind the scenes, the daemon 
communicates with the client through inter-
process communication (sockets), which 
enables the script to run in the context of the 
existing Julia session. 

With this daemon-client mechanism, the 
process for execution of Julia scripts reduces 
to: initialize the server once and for all, then 
use the client for the execution in the future. 
The initialization of a given script for the first 
execution on the newly launched daemon still 
involves compilation but has the compiled 
version cached in the memory for reuse. 
Multiple consecutive executions of the same 
script or other scripts that have the same 
libraries will have almost immediate 
execution since the initialization effort has 
already been taken care of by the daemon. 

Usage and Features: The existing 
implementation presumes that both daemon 

and client reside on the same host machine. 
Supporting a remote execution mode in 
which the daemon might run on a separate 
server or cluster node is a possible direction 
for future work. Serving multiple clients in 
parallel is already supported by the system. 
That is to say that the daemon accepts parallel 
execution requests from multiple invocations 
of clients. It does that by either forking extra 
Julia threads or tasks for handling multiple 
scripts in parallel. It implies that the users are 
able to have some degree of parallel speed-up 
by running independent scripts in parallel but 
still only using the single persistent Julia 
process. 

It should also be noted that our daemon is 
compatible with the conventional Julia 
project environment system. The daemon can 
respect a project environment that users have 
specified (by using the JULIA_PROJECT 
environment variable or the right command-
line flags), and it will use that environment 
when compiling and running the code. This 
enables the daemon to serve multiple projects 
without interference by starting a separate 
daemon process for each or changing 
environments as set. 

In conclusion, the suggested persistent JIT 
warm-up system involves little workflow 
change for users (a single daemon startup and 
invoking a new command to execute scripts) 
but provides significant performance 
improvement in execution times for repeated 
use. We now discuss the performance benefit 
realized through this approach. 

IV. Experimental Results 
To compare the performance of the persistent 
daemon–client approach, a series of tests was 
carried out. All tests were done on a system 
running Ubuntu 20.04 with an Intel Core i5 
processor (quad-core) and 8 GB of RAM. 
Julia version 1.6.1 was utilized to test and the 
daemon mode framework version v0.1.9. 

$ julia program.jl [arguments...] 

$ jclient program.jl [arguments...] 

#!/usr/bin/env bash 

julia -e ’using DaemonMode; runargs()’ $* 



 
 

Current Natural Sciences & Engineering 2 (4) 2025 
 

764 
 

Benchmark Scripts: We have written four 
typical Julia scripts to benchmark various 
scenarios, based on typical use-cases: 

 hello: A minimal script that only 
prints a greeting (no external 
libraries). 

 slow: An intensive computation script 
that carries out a big sort and other 
activities (high CPU use without 
external libraries). 

 long: A script that generates deep 
output and has intentional latency 
using sleep (mimicking I/O or 
waiting). 

 DS: A data science focused version 
that loads external packages 
(DataFrames.jl and CSV.jl) to import 
and process data (heavy package load 
on startup). 

For completeness, the source code for all the 
benchmarks appears in Figures 1–4. Each 
script was run under a variety of different 
conditions for the purposes of measuring 
performance: 

 Direct Julia execution: Using the 
standard julia command to run the 
script in a new Julia process (base 
case, pays the full cost of 
compilation). 

 Daemon (initial run): Executing the 
script via the daemon client when the 
daemon has only recently started 
(meaning the necessary libraries will 
be compiled on the fly as part of this 
first execution). 

 Daemon (next run): Re-running the 
script (or another script with the same 
libraries) through the daemon so that 
much of the compilation has already 
been performed in the previous run. 

 Binary client: Executing the script 
through a standalone compiled client 
application (in our example, an 
experimental client built using Nim) 
that communicates to the Julia 
daemon. We separate the first 
execution using the binary client 
(which still compiles any not-
previously-compiled code in the 
daemon as before) and repeated 
execution using the binary client 
(which eliminates Julia startup costs 
on the client end altogether). 

To avoid ambiguity, we define these modes 
of execution below: 

 Julia (Direct): Direct execution in a 
new Julia process without daemon. 

 Julia Client (First): Execution 
through the Julia daemon client for a 
new daemon or for the first run of a 
script that hasn’t run previously 
(includes first-time compilation 
within daemon). 

 Julia Client (Next): Execution 
through the Julia daemon client for a 
script already run priorly (or whose 
libraries are already precompiled 
within the daemon) – i.e., a warmed-
up subsequent run. 

 Binary Client: Execution through a 
compiled external client calling the 
daemon. We will provide distinct 
timings for the first execution using 
the binary client and the second 
execution using the binary client 
(once the daemon is warmed and the 
binary client is loaded). 

In these modes, we first demonstrate the 
dramatic improvement the daemon facilitates 
with a single attempt and next explore 
averaged performance across multiple 
attempts. 



 
 

Current Natural Sciences & Engineering 2 (4) 2025 
 

765 
 

Single-run Performance: Table I 
summarizes a comparison of execution times 
in seconds for all four benchmark scripts for 
various execution modes. Here “Direct Julia” 
refers to the baseline without the use of a 
daemon, “First Client” and “Subsequent 
Client” refer to execution using our 
framework (a first run vs. a repeated run), and 
“Binary Client” here describes invoking the 
external binary client for the first time. 

Table I – Processing Time Comparison (in 
seconds) 

Scrip
t 

Direct 
Julia 

First 
Client 

Subsequen
t Client 

Binary 
Client 

hello 0.1592 0.6886 0.6682 0.5982 

slow 6.8312 7.9260 7.1680 7.3196 

long 4.1694 4.5462 4.4853 4.4720 

DS 
16.428
6 

16.230
8 

0.6902 
15.472
8 

As shown in Table I, using the persistent 
daemon yields dramatic speed-ups for 
package-heavy workloads. For the DS 
script (which relies on CSV and 
DataFrames), the first run via the daemon is 
as slow as direct execution (about 16.2 s) 
because the daemon must compile those 
packages. However, the subsequent run of 
the DS script finishes in just 0.69 s, compared 
to 16.43 s when run directly – a 97% 
reduction in runtime. In this case, almost 
the entire overhead was eliminated by 
reusing the cached package code. Lighter 
scripts benefit less: for hello, which does 
almost nothing, the overhead of going 
through the daemon (about 0.67 s on second 
run) is slightly higher than the direct run 
(0.16 s), because the daemon itself adds a 
small constant overhead. Compute-bound 
scripts like slow (no external libraries) 
showed roughly the same performance with 

or without the daemon once compilation was 
done (~7.17 s vs 6.83 s), since their runtime 
is dominated by actual computation. The 
long script, which prints a lot of output and 
sleeps deliberately, also showed similar times 
(~4.48 s) in all scenarios because its behavior 
is dominated by I/O and delays rather than 
compilation. The binary client in this initial 
test did not show an advantage on first run—
its times were comparable to direct Julia for 
these scripts, since in this scenario the binary 
client’s first invocation triggers the same 
compilation work in the daemon. 

Averaged Results: To get more robust 
measurements, we executed each scenario 
five times and computed the average 
execution times. Table II summarizes the 
average runtime for each script under each 
execution mode, using the terminology 
defined above. 

Table II – Average Processing Times over 
5 Runs (seconds) 

Method hello slow long DS 

Julia 
(Direct) 

0.1592 6.8312 4.1694 16.4286 

Julia Client 
(First) 

0.6886 7.9260 4.5462 16.2308 

Julia Client 
(Next) 

0.6682 7.1680 4.4853 0.6902 

Binary 
Client 
(First) 

0.5982 7.3196 4.4720 15.4728 

Binary 
Client 
(Next) 

0.0130 6.5080 3.5978 0.0410 

The single-run comparison trends are 
supported by the data presented in Table II. 
The biggest performance improvements our 



 
 

Current Natural Sciences & Engineering 2 (4) 2025 
 

766 
 

framework provides however are for scripts 
that load large external packages (e.g., DS). 
Once the daemon is warmed up, execution 
time of the DS script drops from around 16.4 
s (direct) to 0.69 s (Julia Client Next for the 
most part). That is, the script will run in just 
~4% of the time it would take, were it not for 
the framework. Indeed, the startup time for 
the DS script is reduced to 0.04 s on average 
for subsequent runs if the compiled binary 
client is reused, effectively eliminating the 
overhead of both workers’ java processes 
startup, for that script. It shows that there is 
room for a tailored client in a compiled 
language to eke out a little bit more 
performance than the (minuscule) overhead 
added by the Julia client interface. 

There's obviously less gain from the daemon 
for heavy-I/O-bound or compute-bound 
scripts like slow or long that don't spend a lot 
of time loading packages. For slow, the direct 
run (6.83 s) as compared to a subsequent 
daemon run (7.17 s) differ by around 5%, 
meaning that the daemon does not slow 
computation too much (the heavy 
computation is not slowed but neither is it 
speed up as there is not much compilation 
overhead to amortize). The 4.4 s per case and 
the relatively small change (hardly any) of 
the long script being loaded is consistent 
with what would be expected. Crucially for 
running these kinds of things, binary client 
already performs as fast as/ the same order of 
magnitude as direct execution (eg, hello runs 
in ~0.013 s with Binary Client Next, basically 
that’s nothing, and is faster than the usual 
0.1–0.2 s startup for Julia itself). This 
indicates that the binary client is able to 
effectively bypass the Julia startup overhead, 
which can be beneficial for extremely short 
scripts. 

In conclusion, the long-lived JIT warmup 
infrastructure works best for package-heavy 
scripts (reducing a multi-second pause to a 

sub-second one), and is roughly on par with 
native Julia for other types of workloads. 
Overall, there is little performance overhead 
(at worst a few hundred milliseconds for 
trivial workloads, and at best performance is 
improved, in some cases by two orders of 
magnitude, with library-heavy workloads), 
due to the use of the daemon after the first 
run. These results illustrate that despite its 
initial issues, our approach does solve Julia’s 
TTFX problem and increases its adoptability 
for use cases with a fast startup requirement. 

V. Technical Details 
The architecture of our persistent daemon–
client framework involves several technical 
considerations to ensure it functions correctly 
and efficiently. Key technical aspects 
include: 

 Inter-Process Communication: The 
client and daemon communicate through a 
socket-based protocol. When the client 
forwards a script to the daemon, it pipes 
the content of a script (or a file path and 
some arguments) through a TCP socket. A 
special end-of-data marker is sent to 
inform the daemon that it is finished 
receiving the script (or command). This 
way the daemon can tell when it has the 
complete input and it can already try to 
execute it for you. The daemon responds, 
returning the result (standard out, standard 
error and an exit code) down the same 
connection. An exist status of 0 means that 
the script ran to completion without issue, 
whereas a non-zero status (or a Magic 
Number) means that the script exited 
because of an exception or other user-
invoked halt. 

 Error Handling and Logging: The 
daemon is designed to have strong error 
handling implemented, so as to be able to 
catch a failing script, without the server 
crashing. If the daemon runs a script that 
raises an exception, the exception is 



 
 

Current Natural Sciences & Engineering 2 (4) 2025 
 

767 
 

caught and we try to pretty-print the error 
message to make it as close as possible to 
a real julia session run script error 
message. We rely on sophisticated 
logging tools such as LoggingExtras.[10] 
Crayons (I have jl with custom formatter) 
and the Crayons. Jl[9] package to color 
warnings and errors. Crucially, stack 
traces are whitelisted to remove internal 
calls on the part of the daemon framework, 
so the user gets a clean traceback of only 
their own code. A flexible logging system 
has been built into the framework: 
logging messages can be printed to the 
standard output or saved to an external log 
file, all depending on user choice. Both 
output modes have been tested to work 
reliably and are very helpful to trace back 
daemon executions or to watch them in 
real-time as they happen. 

 Parallel Execution Support: The 
daemon could accommodate many client 
requests running simultaneously with very 
low performance degradation. This is 
accomplished by making use of Julia’s 
built-in parallelism: the server can create 
asynchronous tasks or work on multiple 
threads, in order to handle incoming 
connections concurrently. For example, if 
two clients submit scripts very close to 
each other, the daemon will establish two 
socket connections and each of them 
executes the script in a separate Julia task 
(or thread, if enabled). This design is nice 
in that long-running scripts won’t prevent 
the daemon from engaging its work on 
another incoming script. Synchronization 
ensures shared resources are coordinated 
between threads when the daemon waits 
for all spawned activities to complete 
before exiting. 

 Environment Management: Julia’s 
package environments are respected, 
providing reproducibility across projects. 

The daemon can be started with a 
particular project environment that is, it 
will use the collection of package versions 
specified for that project. The other, more 
secure option is for the client to inject the 
environment with a custom program when 
it sends the script. In practice this means 
that if a user has multiple Julia projects but 
are free to spawn a daemon per env or ask 
the client to tell it which env to load for a 
particular execution. This feature 
guarantees the daemon does not introduce 
a way to make your results non 
reproducible: scripts are launched with the 
same library versions if the job had been 
running in a normal (non daemon) state 
(if the daemon is correctly managing the 
environment). 

These technical capabilities make a solid 
system overall. Inter process communication 
is used to ensure that the communication 
between the client and server are reliable; 
parallel execution enables the daemon to be 
efficient in multi user / process environments; 
error handling ensures users have a similar 
experience to running normal Julia code; and 
environment management makes sure that 
Julia s package system behaves as desired. 

It should be stressed that our approach does 
not involve any change to Julia’s compiler 
and internals – it works purely on user level 
with public APIs and packages. So it's easy to 
install and use with your standard Julia 
setup. 

VI. Conclusion 
We have described a persistent daemon–
client architecture for Julia, which serves to 
largely mitigate JIT compilation overhead at 
startup time. Our solution is to cache the pre-
compiled code in a running daemon process 
so that subsequent Julia scripts can come up 
faster. By performing benchmarks, we 
observe some impressive enhancements: 
especially for script relying so heavily on 



 
 

Current Natural Sciences & Engineering 2 (4) 2025 
 

768 
 

external packages, running time can be 
reduced to only a couple of percent of the 
initial values by employing the framework. 
For computationally or I/O-bounded tasks, 
the overhead added by the framework is 
minimal, if not null, so users do not pay an 
overhead penalty for following this path. 

This dynamic warm-up procedure makes 
Julia much more practical for cases that 
require running frequent short executions, 
e.g. interactive data analysis, scripting, and 
rapid prototyping. By using the daemon–
client model, Julia provides immediacy after 
the first run where it competes on power 
usage with faster-to-start interpreted 
languages (e.g., Python), yet still offers 
Julia’s performance for long calculations. 

In conclusion, we have presented a 
framework where we solve one of the most 
frequently cited Julia pain points (the TTFX 
latency) by making one-time compilation 
work in order to have faster on-the-fly 
execution. The end result is a more 
frictionless workflow for developers and 
researchers. In future work, there is potential 
to expand this model to distributed scenarios 
(such as running the Julia daemon on a 
server/cluster and connecting to it remotely), 
and to improve the client-side 
implementation (including shipping official 
binary clients for common platforms). Even 
so, the naive JIT warm-up strategy already 
seems like a substantial incremental step 
toward turning Julia into a more interactive 
tool for day-to-day number crunching. 

VII. Future Work 
One significant direction is scaling the 
solution for distributed operation, allowing 
multiple nodes to share in common a pre-
compiled code cache and hence deriving the 
same startup latency benefits from clustered 
or multi-node workflows. A further direction 
would be enhancing compatibility with cloud 
environments (e.g., containerized or 

serverless workflow), so that transient 
compute instances can also derive advantage 
from permanent JIT caches in the presence of 
frequent restarts. Yet another significant 
emphasis would be to enhance the security of 
the daemon–client architecture through the 
addition of robust isolation and access 
controls to guard against unauthorised 
injection of malicious code or unauthorised 
entry to the long-running task. Support for 
other client languages or interfaces needs to 
be extended, expanding the framework's 
reach and enabling varied programming 
environments to take advantage of Julia's 
performance-optimized warm-up through 
cross-language support. All these would 
make the framework more scalable, secure, 
and multifaceted, further enabling it for use 
in more real-world applications. 

Figure 1. Comparison of average runtimes for four 
execution scenarios—Direct Julia, Julia Client (First), 
Julia Client (Next), and Binary Client (Next)—across 
all benchmark scripts. 

Recent releases of Julia (e.g., 1.9[11][16]) 
introduced native code caching and 
formalized precompilation workflows that 
directly target latency reduction. Tooling 
such as PrecompileTools.jl[12] and 
SnoopCompile.jl[14] enable package authors 
and users to record representative workloads 
and materialize precompile statements; 
PackageCompiler.jl[13] can build custom 
sysimages to eliminate a portion of TTFX for 
specific environments. These ecosystem 
advances are complementary to our persistent 



 
 

Current Natural Sciences & Engineering 2 (4) 2025 
 

769 
 

daemon approach because they reduce 
compilation within a process, whereas the 
daemon amortizes process initialization 
across invocations [11]–[14]. 

In the distributed setting, a practical option is 
to persist and share native-code caches across 
nodes via content-addressed artifacts and to 
coordinate invalidations; the architectural 
pattern is akin to process-per-request servers 
that keep warmed workers alive (e.g., 
FastCGI-style longevity), while preserving 
per-tenant isolation [19]. 

Conflict of Interest 

There is no conflict to declare. 

Acknowledgement 

The author would like to acknowledge the 
Department of Computer Science at Wichita 
State University for its support and resources 
that contributed to the successful completion 
of this research. 
 

REFERENCES 

1. J. Bezanson, S. Karpinski, V. B. Shah, and 
A. Edelman (2017). “Julia: A fresh 
approach to numerical computing.” SIAM 
Review, 59(1), 65–98. 
2. R. Innes (2018). “JIT compilation in 
modern programming languages.” Journal 
of High-Performance Computing, 15(3), 
150–165. 
3.  S. Dawson-Haggerty, M. Lee, and P. 
Anderson (2019). “A persistent daemon 
framework for reducing JIT warm-up 
times.” Journal of Computer Science, 15(3), 
250–265. 
4. M. Nielsen, J. Petersen, and K. Larsen 
(2018). “Accelerating startup times in 
interpreted languages.” In Proceedings of 
the ACM SIGPLAN Conference on 
Programming Language Design and 
Implementation, pp. 110–120. 

5. L. Smith, R. Jones, and T. Brown (2020). 
“Persistent process models in high-
performance computing.” ACM Computing 
Surveys, 53(2), Article 30. 
6. D. Molina. “juliaclient_nim: A Nim-
based client for persistent Julia servers.” 
GitHub repository, 
https://github.com/dmolina/juliaclient_nim 
(accessed Mar. 2025). 
7. DataFrames.jl. “DataFrames: Tabular 
data in Julia.” Documentation, 
https://dataframes.juliadata.org/ (accessed 
Mar. 2025). 
8. CSV.jl. “CSV: Fast and easy CSV reading 
and writing.” Documentation, 
https://csv.juliadata.org/ (accessed 
Mar. 2025). 
9. K. Fischer. “Crayons.jl: Colorful 
terminal output for Julia.” GitHub 
repository, 
https://github.com/Keno/Crayons.jl 
(accessed Mar. 2025). 
10. LoggingExtras.jl. “LoggingExtras: 
Advanced logging utilities for Julia.” GitHub 
repository, 
https://github.com/JuliaLogging/LoggingExt
ras.jl (accessed Mar. 2025). 
11. JuliaLang. “Julia 1.9 Highlights.” Blog 
post, May 9, 2023. Available: 
https://julialang.org/blog/2023/04/julia-1.9-
highlights/ 
12. JuliaLang. “PrecompileTools.jl 
Documentation.” Available: 
https://julialang.github.io/PrecompileTools.jl
/ 
13. JuliaLang. “PackageCompiler.jl 
Documentation.” Available: 
https://julialang.github.io/PackageCompiler.j
l/dev/ 
14. T. Holy. “SnoopCompile.jl 
Documentation.” Available: 
https://timholy.github.io/SnoopCompile.jl/de
v/ 
15. D. Molina. “DaemonMode.jl: Client–
Daemon workflow to run faster scripts in 
Julia.” GitHub repository, 



 
 

Current Natural Sciences & Engineering 2 (4) 2025 
 

770 
 

https://github.com/dmolina/DaemonMode.jl 
(accessed Sep. 2025). 
16. JuliaHub. “Julia 1.9 Available Now – Free 
to Download and Use.” Blog post, May 12, 
2023. Available: 
https://juliahub.com/blog/julia-1.9-available-
now-free-to-download-and-use 
17. Julia Discourse. “[ANN] 
SnoopPrecompile → PrecompileTools.” Apr. 
24, 2023. Available: 
https://discourse.julialang.org/t/ann-
snoopprecompile-precompiletools/97882 
18. T. Holy et al. “Revise.jl.” GitHub 
repository and docs, 
https://github.com/timholy/Revise.jl; 
https://timholy.github.io/Revise.jl/stable/ 
(accessed Sep. 2025). 
19. M. R. Brown, “FastCGI Specification,” 
Open Market, Apr. 29, 1996. Available: 
https://www.mit.edu/~yandros/doc/specs/fcg
i-spec.html 

20. J. Deuce, “MATDaemon.jl: Running Julia 
from MATLAB using a persistent server,” 
GitHub repository, 
https://github.com/jondeuce/MATDaemon.jl 
(accessed Sep. 2025). 
 
 


