

Current Natural Sciences & Engineering 2 (4) 2025

740

Comparative Analysis of MPI and MapReduce
Algorithms for Efficient Distributed Table Joins

Ninad Adi*

Verizon, New York, US

Received date:01/07/2025, Acceptance date: 29/08/2025

DOI: http://doi.org/10.63015/3ai-2468.2.4

*Corresponding: adi.ninad@yahoo.com

Abstract

This paper presents a comparative performance analysis of distributed table join algorithms
using the MPI4PY library and the MapReduce framework. Two MPI-based hash joins—one
with point-to-point and one with collective communication—are benchmarked against a
reduce-side MapReduce join. Results reveal no universally optimal algorithm: the naive nested
join outperforms others for datasets i20 rows, single process MPI is optimal for mid-sized data
(20–100,000 rows), and multi-process MPI excels beyond that. The study highlights
performance trade-offs, the impact of cluster inconsistencies, and proposes future
improvements, including the use of Hadoop for MapReduce scalability.

Keywords: High-temperature superconductors, magnon excitation, resonance scattering, green
function.

Current Natural Sciences & Engineering
Volume 2, Issue 4, 2025, 740-751

2025 ©Vigyan Vardhan Blessed Foundation

Current Natural Sciences & Engineering 2 (4) 2025

741

1. Introduction
Databases are used in a myriad of modern
technological applications, present in
practically all systems involving the storage
of data. A key concept in database design is
normalization of tables to protect data and
to make the database more flexible by
eliminating redundancy and inconsistent
dependencies. A resultant downside from
normalisation is the need to perform
relational joins between tables, a
computationally expensive process. This
paper presents and compares a selection of
joining algorithms, implemented in Python.
The primary point of comparison is
between a distributed joining algorithm
(implemented on a nine machine cluster
over MPI) and a centralised version (using
the Mapreduce Framework). A nested loop,
naive variant was also implemented as a
point of comparison.

2. Background
A. Distributed Computing
High performance computer clusters are
becoming more and more popular due to
their scalability, affordability and
reliability, as opposed to a centralized
implementation [1]. Clusters enable far
easier horizontal scaling as opposed to the
vertical scaling of traditional high
performance systems. By adding additional
computer nodes to a cluster, more
computational resources can be accessed
without needing to change the underlying
architecture. The benefits of cluster
computing lend themselves well to
Database Management Systems (DBMS)
but due to data network limitations and
configuration complexities, clusters are not
very popular in this application [1]. With
that said, due to advances in network
technologies, interest in distributed
databases systems is increasing.
A distributed join algorithm is proposed in
this paper, through the use of Python’s
Message Passing Interface (MPI4PY)
library to facility the utilization of a cluster.

B. Mapreduce Framework
The MapReduce Framework was created
by Google in 2004 to facilitate and simplify
processing of massive datasets in parallel
on clusters of computers [2]. The
framework was designed to operate on
affordable consumer hardware, providing a
low barrier to entry and offers high
reliability through fault-tolerance.
MapReduce can perform computations on
both structured and unstructured data,
enabling a wide selection of different
algorithms to be applied through the
framework.

C. Problem Overview
1) Problem Description: Table join
operations are one of the most important
relational database queries. The join
involves matching rows in two separate
tables, based on a common column through
a Cartesian product [3]. In most generic
implementations, this involves the linking
of two tables where the primary key of one
table is stored in another table, as a foreign
key. The use of primary and foreign keys is
not a prerequisite, with a join merely
needing a common column between the
tables.
There are four main relational join types,
namely: inner, outer (or full), left and right
joins. The most common join type is an
inner join, requiring that both tables have
matching keys on which the join is
performed. A graphical representation of
these joins is shown in the Figure 1 below.
An inner join can be represented
mathematically by Equation (1).

 R(A,B) ▷▷ R(A,C) = R(A,B,C) (1)

Joins are inherently computationally
expensive due to the iterative nature of the
joining process [4]. There are a number of
ways to improve the join speed such as the
use of surrogate keys over natural keys
(smaller required string length of
comparison), indexing the data, use of
materialized views (effectively pre-

Current Natural Sciences & Engineering 2 (4) 2025

742

computed joins) or table partitioning (split
data set over multiple disks enabling higher
I/O)[4]. Despite these possible
improvements, joins still pose a
computationally taxing task for a DBMS
and as a result finding optimized joining
algorithms is vital to managing large data
sets.
A selection of different algorithms are
available for performing table joins, with
the most fundamental being nested loop,
sort-merge and hash joins [5]. The latter
two joins, along with other variants of their
implementation, are used extensively in
modern DBMS architectures. Based on the
given data set, it might be more beneficial
to use a sort-merge join over a hash join,
such as when the data is already ordered. If
the data set is not ordered by the joining key
then the hash join algorithm has been
shown to outperform the sort-merge join on
average and so have been chosen for this
paper [6].

Fig. 1: Venn Diagram of Different Joins

Joins are inherently computationally
expensive due to the iterative nature of the
joining process [4]. There are a number of
ways to improve the join speed such as the
use of surrogate keys over natural keys
(smaller required string length of
comparison), indexing the data, use of
materialized views (effectively pre-
computed joins) or table partitioning (split
data set over multiple disks enable higher
I/O)[4]. Despite these possible
improvements, joins still pose a

computationally taxing task for a DBMS
and as a result finding optimized joining
algorithms is vital to managing large data
sets.
A selection of different algorithms are
available for performing table joins, with
the most fundamental being nested loop,
sort-merge and hash joins [3]. The latter
two joins, along with other variants of
implementation, are used extensively in
modern DBMS. Based on the given data
set, it might be more beneficial to use a sort-
merge join over a hash join, such as when
the data is already ordered. If the data set is
not ordered by the joining key then the the
hash join algorithm has been shown to
outperform the sort-merge join on average
and so have been chosen for this project [4].

D. Project Specifications
1) Assumptions and Constraints: The
proposed algorithms must be run on the
same system to ensure that the comparison
is fair. The cluster provided is assumed to
handle all underlying required network
communications between nodes. The
cluster is assumed to run consistently and
that no other users will be using the
machine or the network during the
execution of benchmarks.
2) Success Criteria: The project will be
deemed a success if all three implemented
algorithms can correctly produce joined
results. Moreover, architecture specific
implementations, such as MPI, should scale
with the resources allocated to them. Trend
graphs should correspond to the expected
shape as larger tables are joined.

E. Literature Contextualization
Due to the importance of joins in relational
databases and their resultant extensive
utilization, a wide selection of research has
been conducted. Key papers and research
pertaining to relevant join algorithms are
outlined below.
1) Comparison of Join Algorithms:
[7], [8] discuss and compare a selection of
different join algorithms, including but not

 Table 2 Table 1 Table 1 Table 2

 Table 2 Table 1 Table 1 Table 2

Inner Join Left Join

Right Join Full Join

Current Natural Sciences & Engineering 2 (4) 2025

743

limited to those implemented in this paper.
These works discuss in-memory Equi-joins
over a range of input sizes. They provide a
valuable point of reference against which
the results in this paper can be compared.
2) MapReduce Join Algorithms: [9]–
[11] provide a comparison of join
algorithms, implemented using the
MapReduce Framework. These papers
outline trade-offs in the utilisation of the
framework and discuss its advantages and
disadvantages over other implementations.
All four provide extensive benchmarking
and result analysis. [12] discusses the use of
MapReduce, specifically implemented on
the Hadoop framework, providing a guide
to extend the work presented in this paper
to run on a Hadoop cluster.
3) Distributed Join Algorithms: [13]–
[15] discuss the implementation of
distributed join algorithms, providing
valuable reference for the MPI
implementation presented in this paper.
[13] is of particular relevance wherein the
authors present the implementation of
distributed join algorithms, running on
thousands of cores, implemented in C++,
through the use of MPI. [13] presents a
valuable discussion into advantages and
disadvantages of distributed join algorithms
as well as insight into architecture design.

3. Implemented Algorithms
Three different joining algorithms are
implemented and compared, over a range of
sample data. Each algorithm is
implemented in Python and a high level
overview of each algorithm is presented
below.

A. Language justification
Python is the language of choice for big
data processing due to its ease of use and
rapid development time and hence is
utilized [16]. Additionally, Python has a
low barrier to entry, enabling novice coders
to quickly and easily pick up the language.
This means that a multitude of
implementations can be created, focusing

heavily on the algorithmic implementations
rather than being restricted due to language
specific complexities, as is the case in C.
Python is an interpreted language unlike the
compiled, low level languages such as C
and Fortran. Subsequently, benchmark
results produced will not be fairly
comparable. The goal in picking Python is
to implement a selection of different join
algorithms and compare their performance,
in the Python context.

B. Input Standardization and JSON
All datasets read into and out of each
algorithm are stored using JSON formatting
to minimize the required string and csv
parsing. This makes the verification of
results easier as the output is already in a
predefined data structure. Additionally,
while the initial read in of information may
be slower as a basic conversion from JSON
to Python object is required, the lack of line
by line parsing results in a quicker overall
implementation [17].

C. Naive Join Algorithm
The naive algorithm performs the join using
two nested for loops. The outer loop iterates
through the first table row-by-row. The
inner loop is executed for each row of table
one and iterates through the second table
row-by-row. The key of table one is
compared with that of table two. If the keys
match, the rows of table one and table two
are concatenated and appended to a final
output table. Using the naive algorithm
shows efficiency when table one is small
and table two is pre-indexed and large [18].
The naive algorithm is superior to merge
joins and hash joins when small tables are
used [18]. However, inferior benchmarking
results are yielded compared to merge joins
and hash joins for large tables. This is
demonstrated by its O(n) = n2 time
complexity.
The naive algorithm implementation is
benchmarked by timing different sections
of the code. The time to read the files from
disc, the time to perform the join, the time

Current Natural Sciences & Engineering 2 (4) 2025

744

to write to the output file and the total time
for implementation are all measured.
Benchmarks of disc I/O are computed as
they give insight to whether the memory or
the processing computation make up the
majority of the implementation time.

D. Hash Join Implementation Python
Dictionary Utilization
A hash join algorithm leverages the hash
table data structure to improve the
efficiency of performing equijoin
operations on database tables. Hash tables
contain worst case time complexity of O(n)
= n and θ(1) in the average case for
insertion, deletion and search which make
it suitable for use in Hash Join algorithms.
Both the MapReduce and MPI
implementations of the hash join algorithm,
made use of Python’s dictionary data
structure which inherently makes use of a
hash table as the underlying mechanism and
is subsequently used in the implementations
[17].

E. Map Reduce
A reduce-side join algorithm is
implemented using MRJob, a Python
MapReduce library. This algorithm
performs the joining operation in the
reducer phase of the MapReduce as
opposed to performing it in the mapper
phase as done by map-side join algorithms.
The map-side join algorithm needs small
tables as it stores them in memory,
indicating poor performance as the size of
tables scales [19]. The reduce-side join
algorithm can be used on any data size
without restrictions and is therefore
implemented in this paper [20].
The implemented reduce-side join
algorithm makes use of one mapper phase
and two reducer phases. In the mapper
phase, all the input records are read in as an
iterable array. During each iteration, an
intermediate key-value pair is generated for
each record. The key is the primary key in
one table and the foreign key in another
table, this being determined by the selected

column to join on. The value is the entire
record for that instance of iteration. An
identifier for records’ table of origin is
added into the value of the key-value pairs
and it is used to deal with duplicate records.
It ensures that all matching keys allow the
records to be correctly joined as many times
as they appear in the table. The reducer
phase then takes these key-value pairs,
sorting and grouping the values together
based on matching keys. This grouping is
the joining of the records. The second
reducer phase serves only to group all the
joined records to allow a usable output
format.

Fig. 2: Illustration of Reduce-Side Join Algorithm

The main benefit of MapReduce is that it
simplifies data processing by distribution
on multiple nodes within a cluster, such as
Hadoop. The mapper phase would generate
the key value pair, which is then shuffled to
the nodes with similar keys being grouped.
This allows the reducer on a node to do a
sort on a subset of the data. The reduce-side
join is implemented serially, making use of
none of the nodes on a cluster apart from the
main node that it is run on, hence losing
many of the speed advantages associated
with a cluster. This means it will run slower
for smaller datasets as opposed to other
implementations. A greater benefit in
processing speed due to running on a cluster
is only visible at larger datasets, although
this is not implemented in this paper [20].
The MRJob library is structured to
specifically provide a

Current Natural Sciences & Engineering 2 (4) 2025

745

simple method of overriding the default
mapper and reducer phases, and to schedule
as many of these phases as desired without
the implementation or changing of any
settings that may hinder the execution of the
MapReduce job. As such, the benchmark
on time is done from the start of execution
of the MRJob and it ends when the MRJob
has run to completion. This means that the
benchmarks include the file reading,
mapping, reducing and file writing times.
This is sufficient as the entire paper is based
around I/O which means it should include
the insertion of data and the presentation of
results.

F. MPI
The MPI equi-join is implemented with the
MPI4PY library in conjunction with a hash-
join algorithm. Two MPI implementations,
based off the same hash join algorithm,
were developed. The first implementation
utilizes point-to-point communication as
opposed to the collective communication
approach in the second variant. Both
implementations make use of a modified
“Master-Slave” topology, where the master
process acts as a controller node and then
performs computation alongside the other
slave processes. Once all the computation
across the processes are complete, all the
data is retrieved by the master process and
combined to form the final results.
The two approaches only vary in how the
data is passed to other processes. The
master process reads in both input tables
into memory. The larger table is identified
by comparing the number of rows in the
two input tables. The main two
implementations are discussed below.

1) 1) Point-to-Point: In order to split the data
and computation as evenly as possible,
table indices are calculated with respect to
the number of processes and rows
contained in the table. These sub-tables are
then sent to the other processes using the
send command from within a loop. All
other processes receive their respective
data, from the master process, identified by

the tag parameter. The algorithm requires
the entirety of the other table to ensure that
there are no keys that are missed during the
joining process. This table is sent to the
other processes using the send command.
The final sub-tables are then calculated and
sent back to the master process upon
completion of the hash join function. The
send command is used by each of these
nodes to send the data back to the master
process.
2) Collective Communication:
Alternatively, the collective
communication approach divides the larger
table into evenly distributed parts,
considering the number of processes and
number of rows in the table. This data is
then distributed using the scatter command
amongst all the processes, including the
master. Furthermore, the entirety of the
smaller table is sent to all processes using
the broadcast command. Each process then
performs the hash join on each of these
tables. The Barrier command is called to
block all processes until they have reached
the end of this routine, ensuring
synchronization amongst the processes and
preventing deadlock [21]. Once all
processes are synchronized, the master
process employs the gather command to
retrieve all the sub-tables.
The Broadcast, scatter and gather
commands are illustrated below in Figures
3 - 5. The flowchart of the MPI collective
programs are depicted in Figure 6.
3) Benchmark: Specific sections of
code related to the master process are timed
for benchmark purposes. The benchmark

Fig. 3: Illustration of Scatter Process

0

1 2 3 0

Current Natural Sciences & Engineering 2 (4) 2025

746

Fig. 4: Illustration of Gather Process

metrics include the time take to: read files
into memory, scatter, broadcast, Barrier,
send and receive. These results are were
obtained on input files ranging between 10
- 100000000 rows and between 1 and 50
processes running on the cluster.

G. Data Generation
A Python script was created to produce
sample data for the testing of the three
algorithms. The output of this script is
meant to simulate what real world data
would look like from a traditional
structured database. The data has been
heavily simplified and only contains key
information pertaining to the joining
process, such as a key on which the join is
performed and additional data to simulate
other columns within the tables. The
generator has two modes of operation,
realistic and worst case data sets.
The worst possible data set that could be
generated is one where for every key in
table one there is a corresponding key in
table two. This proves to be the worst
possible implementation for an inner join as
there are no rows missed in the joining
process. Moreover, both tables are the same
size meaning that no minimisation can be
achieved through hashing of the smaller
table. Lastly, the keys in the two tables are
generated in reverse order of each other,
making the data inherently ordered
backwards between the two tables.
The best case scenario of data generation
aims to show a more realistic sample data
set. Here, one table is created to have a one
fifth the number of keys as the other table,
minimising the total number of joins that
need to be performed by five times.

H. Verification of Results
Another application was made that took in
the results of the three scripts and compared
the results of the joins to ensure that all
three produced the correct outputs. This
was done by reading in each table and then
performing a sort on the rows as some
algorithms produce differently ordered
output results.

Fig. 5: Illustration of broadcast Process

Fig. 6: Flow Chart for MPI Collective
Communication

0

2 1 0 3

0

1 2 3 0

Current Natural Sciences & Engineering 2 (4) 2025

747

Next, the results were checked for equality.
If an error is found, then the user is
informed accordingly.

I. Controller
The controller application enables the tester
to generate required sample data, run all
three join algorithms as well as the result
verifier with one command. Run time
parameters enable the tester to specify the
number of rows to generate, the number of
nodes to run the MPI tests on, what
algorithms they wish to run, and the kind of
data (best case or worst case) to generate.
The controller also informs the join scripts
of what to name their join outputs and
benchmark result files, based on the user
input run time parameters.

J. Benchmarker
Lastly, a script was made to recursively call
the controller, enabling a batch of
benchmarks to be run over a range of array
sizes and node counts. This application
drastically reduces the total time taken to
run tests on the system as many tests, in a
multitude of configurations, can be run
sequentially.

4. Experiment Environment
The algorithms were all run on a cluster
named Jaguar1 that contains 9 nodes. Each
node has an Intel Core i7 950 CPU @
3.07GHz. The cluster nodes have varying
sizes of 12GB to 24GB memory with some
nodes utilizing SSD and others HDD. The
nodes compromise of 4 cores with 8 threads
each, totalling 72 threads on the entire
cluster. A machine file is needed to specify
the nodes to use in the execution of the
code.
This set-up is not ideal as it makes no use
of queueing, resulting in sharing cluster
resources between different simultaneous
program executions. This is contradictory
to the assumption stated in Section X,
which assumed that the cluster utilization
would be uncontested during
benchmarking. As a result, even though the

benchmark results are accurate, they proved
to be inconsistent between executions and
are thus unreliable. The cluster experienced
a number of issues related to storage space
as it could not store the temporary files that
were created during the execution of some
algorithms. The cluster also suffered from
instability and would break the connection
pipe between users and the cluster with no
reason. Another issue arose from the
distribution of the MPI data as it would
evenly distribute the workload between
uneven nodes as they had different memory
and disk drive specifications. This resulted
in faster nodes waiting for slower nodes to
finish processing their data before they
were broadcast, introducing a hardware
overhead in the benchmark tests.

A. Limitations of Experimental Setup
Despite rigorous benchmarking, the results
presented are subject to several limitations
due to the inconsistent nature of the Jaguar1
cluster. The lack of a job queue led to
simultaneous execution of multiple
programs, resulting in contested resource
usage. Furthermore, node heterogeneity in
memory and disk specifications introduced
non-deterministic delays and biased MPI
timings. These limitations significantly
reduce the reproducibility and
generalizability of the results. Future work
should include repeating the experiments
on a dedicated, homogeneous HPC cluster
with queue-managed scheduling to validate
these performance claims. Additional
instability was observed due to frequent
disconnections and limited temporary
storage, especially when executing
largescale joins. The variation in hardware
(HDD vs SSD and memory sizes) further
caused faster nodes to wait for slower ones,
skewing MPI benchmark results and adding
hardware induced delay not reflective of
algorithmic performance.

5. Results
A wide selection of tests were performed on
the each algorithm, totalling 1680 joined

Current Natural Sciences & Engineering 2 (4) 2025

748

tables across the three algorithms. These
tests were run with the aid of the benchmark
utility, enabling a programmatic input of
different sample sizes and node
configurations to conduct each join. In
total, close to 5 billion rows where join
across all tables and algorithms. This
section presents the results and in the
following sections these results are
discussed and analysed. All graphs
generated are logarithmic in both axis, with
different lines representing different join
algorithm configurations, such as
additional MPI processes.
Figure 7 shows an average output of all
three algorithms, with different colours
representing different operation modes. Not
all tested configurations are shown in this
graph but rather key implementations such
as increasing number of nodes.

Fig. 7: Benchmark of All Join Algorithms over a
Series of Row sizes

Figure 8 represents computation time of the
different algorithms at a lower row count.

Fig. 8: Benchmark of Low Row Counts

Figure 9 shows the key testing information,
used to invert the ideal algorithms for
different sample sizes.
Testing results are analysed in the
following section.

6. Critical Analysis
Each presented graph was chosen to
highlight a specific trend present in the
testing results.
Reference 7 shows the general trend of the
algorithms, with the expected pattern of
increasing computation time

Fig. 9: Benchmark of Key Algorithm
Implementations

with increased row count. From this graph,
it is clear that the best algorithm below a
particular size of data set is MPI hash join
running on one node. Over and above a
particular size, this is no longer the case.
This crossover point can be seen in
Reference 9, clearly highlighting that above
a sample size of 100,000 rows, MPI hash
join running on one process is slower than
MPI hash join running on 4 processes. This
graph only shows MPI with one and four
nodes as these were the best results
obtained from all cluster configurations
run.
Reference 8 shows that at low row counts,
there is no clear trend with increased row
number but rather that the number of
processes results in slower computation
with the MPI implementation. This
behaviour is as a result of the added
overhead associated with additional MPI
processes. The network distribution time
far outweighs the added computation power
from spreading the information over a

Current Natural Sciences & Engineering 2 (4) 2025

749

cluster at these low row counts. The
network I/O is simply much higher than the
time complexity of conducting the join.
All three graphs show the naive solution
quickly ramping up and out of the range of
the other implementation. This behaviour is
expected due to the squared time
complexity of the algorithm. With that said,
figure 8 shows that below 20 rows in the
table, the naive solution proves to be the
fastest joining algorithm, as was predicted
in the algorithm discussion section of this
paper.
The MapReduce join is never the fastest
solution in any test. This is due to the
overhead associated with the algorithm,
primary the creation and deletion of
temporary files. Figure 3 shows that above
a 2 million rows, the map reduce
implementation is faster than the single
process MPI implementation. Despite this,
it is still slower than the MPI four processor
implementation.

A. Selection of Optimum Algorithm
These results show that there is no single
possible best solution for all input data
types and sizes. A hybrid approach is
therefore proposed wherein different
algorithms are utilized based on the input
sample data. If the sample data is below 20
rows, then the nested for loop join is
recommended. For joins between 20 and
100 000 rows, a single MPI implementation
hash join is recommended. For this sample
size, there is no benefit in using the MPI
framework and a standard hash join would
outperform these results as it would not
have the associated library overhead. For
sample size over 100 000 rows, MPI shows
increased performance, with a four process
implementation beating the single process
result.
Tests were only conducted up to 10 000 000
rows but over an above this the trend will
continue, meaning the success criteria that
scaling computational resources result in
faster join times was met. Thus, there will
be a threshold in higher row counts where

more than four MPI nodes will achieve
faster performance but benchmarks of
datasets up to this size were not conducted
in this paper due to the required
computational resources required to
conduct tests of this size.

B. Justification for MPI Scaling Results
The MPI join algorithm performance
showed a number of interesting results,
some of which are contradictory to what
one would expect. For example, it was
expected that the total time of the join
algorithm would drop with added
computational power allocated to the join.
This trend was observed only between one
MPI process and four MPI processes, above
a specific table size. This indicates that the
network overhead associated with the MPI
implementation outweighs the gained speed
from additional computation power.
Additionally, there is an inherent overhead
resulting from how Mpi4py transmits
information between processes. All Python
objects are first pickled before being sent,
resulting in heavy network overhead. These
results will differ if C was used, for
example, as this does not require the
pickling of objects before transmission and
unpickling after being received [17].
The MPI join algorithm running on one
process was shown to be the fastest
implementation below a threshold as this is
effectively the standard hash join algorithm
implemented in python. There is no
network overhead due to MPI for this as no
transmission between processes is required.

C. Future Improvements
The advantages of MapReduce used in
combination with a Hadoop cluster are
never leveraged to compare the processing
performance of this architecture to MPI.
This would surpass the serially
implemented MapReduce through the use
of a parallelized MapReduce. MapReduce
with Hadoop should be implemented and
benchmarked for a more comparative
analysis with MPI. Future iterations of this

Current Natural Sciences & Engineering 2 (4) 2025

750

study should explore a full MapReduce
implementation using Hadoop to properly
leverage distributed parallelism, which was
absent in the current MRJob setup. The
current reduce-side join executed serially,
negating MapReduce’s inherent strengths.
Additionally, MPI was only benchmarked
up to four processes due to memory and
execution limits imposed by the cluster.
While the results indicate increased
performance with four nodes, scaling
beyond this could uncover performance
ceilings or inefficiencies in collective
communication patterns. Testing beyond
four nodes requires access to a more robust,
dedicated cluster.

D. Security Considerations
While performance was the primary focus,
security is a critical aspect in distributed
data processing. In production
environments, transmitting sensitive data
between cluster nodes demands encryption,
access control, and compliance with
privacy standards such as GDPR.
Implementations of distributed joins must
consider secure communication protocols
and user authentication, particularly when
scaling across cloud environments. These
aspects were beyond the scope of the
current study but are essential for real-
world deployment.

7. Conclusion
This paper presented a comparison between
different table join algorithms,
implemented in Python. The algorithms
were discussed in detailed and then
benchmarked. This showed that a
distributed, cluster based algorithm,
implemented with MPI, outperformed a
parallel algorithm, created with
MapReduce. The results were critically
analysed, finding justification for
performance of each algorithm. Future
improvements were then proposed,
providing recommendations as to future
work.

References
[1] E. Ceran, “A C++ Distributed
Database Select-Project join Query
Processor On A Hpc Cluster,” 2012.
http://etd.lib.metu.edu.tr/upload/12614311/
index.pdf
[2] C. McTaggart,
“Hadoop/MapReduce Object-oriented
framework presentation.”
https://www.cs.colorado.edu/∼kena/
classes/5448/s11/presentations/hadoop.pdf
[3] P. Mishra and M. H. Eich, “Join
Processing in Relational Databases,” ACM
Computing Surveys, vol. 24, no. 1, 1992.
http://www.csd.uoc.gr/∼hy460/pdf/p63-
mishra.pdf
[4] J. Stephens and C. Russell,
Beginning MySQL Database Design and
Optimization: From Novice to
Professional, 2004.
http://download.nust.na/pub6/mysql/tech-
resources/articles/ mysql-db-design-
ch5.pdf
[5] S. Chu, M. Balazinska, and D.
Suciu, “From Theory to Practice:
Efficient Join Query Evaluation in a
Parallel Database System.”
https://homes.cs.washington.edu/∼chushu
mo/files/ sigmod 15 join.pdf
[6] M.-C. Albutiu, A. Kemper,
and T. Neumann, “Massively
Parallel Sort-Merge Joins in Main Memory
Multi-Core Database Systems.”
https://15721.courses.cs.cmu.edu/
spring2018/papers/20-
sortmergejoins/p1064-albutiu.pdf
[7] S. Schuh, X. Chen, and J. Dittrich,
“An Experimental Comparison of Thirteen
Relational Equi-Joins in Main Memory,”
2016. http://infosys.cs.uni-saarland.de
[8] S. Helmerand G.
Moerkotte, “Evaluation of Main
Memory Join Algorithms for
Joins with Subset Join Predicates.”
https://pdfs.semanticscholar.org/fc92/
442c3ba6f7446f8860f842e42c0190fb832c.
pdf
[9] M. Bushan, O. Martina Devi, and A.
Professor, “Comparison of Join Algorithms

Current Natural Sciences & Engineering 2 (4) 2025

751

in Map Reduce Framework,” International
Journal of Innovative Research in
Computer and Communication
Engineering (An ISO Certified
Organization), vol. 32972, no. 5, 2007.
www.ijircce.com
[10] A. Pigul, “Comparative Study
Parallel Join Algorithms for MapReduce
environment.”
http://www.ispras.ru/proceedings/
docs/2012/23/isp 23 2012 285.pdf
[11] S. Blanas, J. M. Patel, V.
Ercegovac, J. Rao, E. J. Shekita, and Y.
Tian, “A Comparison of Join Algorithms
for Log Processing in MapReduce,” 2010.
http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.644.9902&
rep=rep1&type=pdf
[12] K. Palla, “A Comparative Analysis
of Join Algorithms Using the Hadoop
Map/Reduce Framework,” 2009.
https://www.inf.ed.ac.uk/publications/thesi
s/online/IM090720.pdf
[13] C. Barthels, I. Uller, T. Schneider,
G. Alonso, and T. Hoefler, “Distributed
Join Algorithms on Thousands of Cores,”
VLDB Endowment, 2017.
http://www.vldb.org/pvldb/ vol10/p517-
barthels.pdf
[14] D. A. Schneider and D. J. Dewitt,
“A Performance Evaluation of Four Parallel
Join Algorithms in a Shared-Nothing
Multiprocessor Environment,” 1992.
http://pages.cs.wisc.edu/
∼dewitt/includes/paralleldb/sigmod89.pdf
[15] M. J. Yu and P.-Y. Sheu, “Adaptive
Join Algorithms in Dynamic Distributed
Databases,” Distributed and Parallel
Databases, vol. 5, no. 1, pp. 5–30, 1997.
http://link.springer.com/10.1023/A:
1008619705079
[16] A. Beck and A. Beck, “Data
Analysis With Python.”
https://wis.kuleuven.be/CHARM/images/p
artners/python-lecture.pdf
[17] Tutorials Point, “Python
Dictionary,” 2018. http:
//www.tutorialspoint.com/python/python
dictionary.htm

[18] Microsoft, “Understanding
Nested Loops Joins — Microsoft
Docs,” 2012.
https://docs.microsoft.com/en-us/
previous-versions/sql/sql-server-2008-
r2/ms191318(v=sql.105)
[19] Priyanka, “Map-side Join Vs. Join -
Edureka Blog,” 2013.
https://www.edureka.co/blog/map-side-
join-vs-join
[20] M. H. Mohamed and M. H.
Khafagy, “Hash Semi Cascade Join for
Joining Multi-Way Map Reduce,” 2015.
[21] L. Dalcin, “Overview — MPI for
Python 3.0.0 documentation,” 2017.
http://mpi4py.readthedocs.io/en/stable/ove
rview.

