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Abstract 

 
This paper presents a comparative performance analysis of distributed table join algorithms 
using the MPI4PY library and the MapReduce framework. Two MPI-based hash joins—one 
with point-to-point and one with collective communication—are benchmarked against a 
reduce-side MapReduce join. Results reveal no universally optimal algorithm: the naive nested 
join outperforms others for datasets i20 rows, single process MPI is optimal for mid-sized data 
(20–100,000 rows), and multi-process MPI excels beyond that. The study highlights 
performance trade-offs, the impact of cluster inconsistencies, and proposes future 
improvements, including the use of Hadoop for MapReduce scalability. 
 

Keywords: High-temperature superconductors, magnon excitation, resonance scattering, green 
function. 

 

 

 

 

 

Current Natural Sciences & Engineering 
Volume 2, Issue 4, 2025, 740-751 

 

2025 ©Vigyan Vardhan Blessed Foundation 



 
 

Current Natural Sciences & Engineering 2 (4) 2025 
 

741 
 

1. Introduction 
Databases are used in a myriad of modern 
technological applications, present in 
practically all systems involving the storage 
of data. A key concept in database design is 
normalization of tables to protect data and 
to make the database more flexible by 
eliminating redundancy and inconsistent 
dependencies. A resultant downside from 
normalisation is the need to perform 
relational joins between tables, a 
computationally expensive process. This 
paper presents and compares a selection of 
joining algorithms, implemented in Python. 
The primary point of comparison is 
between a distributed joining algorithm 
(implemented on a nine machine cluster 
over MPI) and a centralised version (using 
the Mapreduce Framework). A nested loop, 
naive variant was also implemented as a 
point of comparison. 
 
2. Background 
A. Distributed Computing 
High performance computer clusters are 
becoming more and more popular due to 
their scalability, affordability and 
reliability, as opposed to a centralized 
implementation [1]. Clusters enable far 
easier horizontal scaling as opposed to the 
vertical scaling of traditional high 
performance systems. By adding additional 
computer nodes to a cluster, more 
computational resources can be accessed 
without needing to change the underlying 
architecture. The benefits of cluster 
computing lend themselves well to 
Database Management Systems (DBMS) 
but due to data network limitations and 
configuration complexities, clusters are not 
very popular in this application [1]. With 
that said, due to advances in network 
technologies, interest in distributed 
databases systems is increasing. 
A distributed join algorithm is proposed in 
this paper, through the use of Python’s 
Message Passing Interface (MPI4PY) 
library to facility the utilization of a cluster. 
 

B. Mapreduce Framework 
The MapReduce Framework was created 
by Google in 2004 to facilitate and simplify 
processing of massive datasets in parallel 
on clusters of computers [2]. The 
framework was designed to operate on 
affordable consumer hardware, providing a 
low barrier to entry and offers high 
reliability through fault-tolerance. 
MapReduce can perform computations on 
both structured and unstructured data, 
enabling a wide selection of different 
algorithms to be applied through the 
framework. 
 
C. Problem Overview 
1) Problem Description: Table join 
operations are one of the most important 
relational database queries. The join 
involves matching rows in two separate 
tables, based on a common column through 
a Cartesian product [3]. In most generic 
implementations, this involves the linking 
of two tables where the primary key of one 
table is stored in another table, as a foreign 
key. The use of primary and foreign keys is 
not a prerequisite, with a join merely 
needing a common column between the 
tables. 
There are four main relational join types, 
namely: inner, outer (or full), left and right 
joins. The most common join type is an 
inner join, requiring that both tables have 
matching keys on which the join is 
performed. A graphical representation of 
these joins is shown in the Figure 1 below. 
An inner join can be represented 
mathematically by Equation (1). 
 
 R(A,B) ▷▷ R(A,C) = R(A,B,C) (1) 
 
Joins are inherently computationally 
expensive due to the iterative nature of the 
joining process [4]. There are a number of 
ways to improve the join speed such as the 
use of surrogate keys over natural keys 
(smaller required string length of 
comparison), indexing the data, use of 
materialized views (effectively pre-
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computed joins) or table partitioning (split 
data set over multiple disks enabling higher 
I/O)[4]. Despite these possible 
improvements, joins still pose a 
computationally taxing task for a DBMS 
and as a result finding optimized joining 
algorithms is vital to managing large data 
sets. 
A selection of different algorithms are 
available for performing table joins, with 
the most fundamental being nested loop, 
sort-merge and hash joins [5]. The latter 
two joins, along with other variants of their 
implementation, are used extensively in 
modern DBMS architectures. Based on the 
given data set, it might be more beneficial 
to use a sort-merge join over a hash join, 
such as when the data is already ordered. If 
the data set is not ordered by the joining key 
then the hash join algorithm has been 
shown to outperform the sort-merge join on 
average and so have been chosen for this 
paper [6]. 
  

 
Fig. 1: Venn Diagram of Different Joins 
 
Joins are inherently computationally 
expensive due to the iterative nature of the 
joining process [4]. There are a number of 
ways to improve the join speed such as the 
use of surrogate keys over natural keys 
(smaller required string length of 
comparison), indexing the data, use of 
materialized views (effectively pre-
computed joins) or table partitioning (split 
data set over multiple disks enable higher 
I/O)[4]. Despite these possible 
improvements, joins still pose a 

computationally taxing task for a DBMS 
and as a result finding optimized joining 
algorithms is vital to managing large data 
sets. 
A selection of different algorithms are 
available for performing table joins, with 
the most fundamental being nested loop, 
sort-merge and hash joins [3]. The latter 
two joins, along with other variants of 
implementation, are used extensively in 
modern DBMS. Based on the given data 
set, it might be more beneficial to use a sort-
merge join over a hash join, such as when 
the data is already ordered. If the data set is 
not ordered by the joining key then the the 
hash join algorithm has been shown to 
outperform the sort-merge join on average 
and so have been chosen for this project [4]. 
 
D. Project Specifications 
1) Assumptions and Constraints: The 
proposed algorithms must be run on the 
same system to ensure that the comparison 
is fair. The cluster provided is assumed to 
handle all underlying required network 
communications between nodes. The 
cluster is assumed to run consistently and 
that no other users will be using the 
machine or the network during the 
execution of benchmarks. 
2) Success Criteria: The project will be 
deemed a success if all three implemented 
algorithms can correctly produce joined 
results. Moreover, architecture specific 
implementations, such as MPI, should scale 
with the resources allocated to them. Trend 
graphs should correspond to the expected 
shape as larger tables are joined. 
 
E. Literature Contextualization 
Due to the importance of joins in relational 
databases and their resultant extensive 
utilization, a wide selection of research has 
been conducted. Key papers and research 
pertaining to relevant join algorithms are 
outlined below. 
1) Comparison of Join Algorithms: 
[7], [8] discuss and compare a selection of 
different join algorithms, including but not 

       Table 2    Table 1     Table 1 Table 2 

   Table 2   Table 1     Table 1 Table 2 

Inner Join Left Join 

Right Join Full Join 
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limited to those implemented in this paper. 
These works discuss in-memory Equi-joins 
over a range of input sizes. They provide a 
valuable point of reference against which 
the results in this paper can be compared. 
2) MapReduce Join Algorithms: [9]–
[11] provide a comparison of join 
algorithms, implemented using the 
MapReduce Framework. These papers 
outline trade-offs in the utilisation of the 
framework and discuss its advantages and 
disadvantages over other implementations. 
All four provide extensive benchmarking 
and result analysis. [12] discusses the use of 
MapReduce, specifically implemented on 
the Hadoop framework, providing a guide 
to extend the work presented in this paper 
to run on a Hadoop cluster. 
3) Distributed Join Algorithms: [13]–
[15] discuss the implementation of 
distributed join algorithms, providing 
valuable reference for the MPI 
implementation presented in this paper. 
[13] is of particular relevance wherein the 
authors present the implementation of 
distributed join algorithms, running on 
thousands of cores, implemented in C++, 
through the use of MPI. [13] presents a 
valuable discussion into advantages and 
disadvantages of distributed join algorithms 
as well as insight into architecture design. 
 
3. Implemented Algorithms 
Three different joining algorithms are 
implemented and compared, over a range of 
sample data. Each algorithm is 
implemented in Python and a high level 
overview of each algorithm is presented 
below. 
 
A. Language justification 
Python is the language of choice for big 
data processing due to its ease of use and 
rapid development time and hence is 
utilized [16]. Additionally, Python has a 
low barrier to entry, enabling novice coders 
to quickly and easily pick up the language. 
This means that a multitude of 
implementations can be created, focusing 

heavily on the algorithmic implementations 
rather than being restricted due to language 
specific complexities, as is the case in C. 
Python is an interpreted language unlike the 
compiled, low level languages such as C 
and Fortran. Subsequently, benchmark 
results produced will not be fairly 
comparable. The goal in picking Python is 
to implement a selection of different join 
algorithms and compare their performance, 
in the Python context. 
 
B. Input Standardization and JSON 
All datasets read into and out of each 
algorithm are stored using JSON formatting 
to minimize the required string and csv 
parsing. This makes the verification of 
results easier as the output is already in a 
predefined data structure. Additionally, 
while the initial read in of information may 
be slower as a basic conversion from JSON 
to Python object is required, the lack of line 
by line parsing results in a quicker overall 
implementation [17]. 
 
C. Naive Join Algorithm 
The naive algorithm performs the join using 
two nested for loops. The outer loop iterates 
through the first table row-by-row. The 
inner loop is executed for each row of table 
one and iterates through the second table 
row-by-row. The key of table one is 
compared with that of table two. If the keys 
match, the rows of table one and table two 
are concatenated and appended to a final 
output table. Using the naive algorithm 
shows efficiency when table one is small 
and table two is pre-indexed and large [18]. 
The naive algorithm is superior to merge 
joins and hash joins when small tables are 
used [18]. However, inferior benchmarking 
results are yielded compared to merge joins 
and hash joins for large tables. This is 
demonstrated by its O(n) = n2 time 
complexity. 
The naive algorithm implementation is 
benchmarked by timing different sections 
of the code. The time to read the files from 
disc, the time to perform the join, the time 



 
 

Current Natural Sciences & Engineering 2 (4) 2025 
 

744 
 

to write to the output file and the total time 
for implementation are all measured. 
Benchmarks of disc I/O are computed as 
they give insight to whether the memory or 
the processing computation make up the 
majority of the implementation time. 
 
D. Hash Join Implementation Python 
Dictionary Utilization 
A hash join algorithm leverages the hash 
table data structure to improve the 
efficiency of performing equijoin 
operations on database tables. Hash tables 
contain worst case time complexity of O(n) 
= n and θ(1) in the average case for 
insertion, deletion and search which make 
it suitable for use in Hash Join algorithms. 
Both the MapReduce and MPI 
implementations of the hash join algorithm, 
made use of Python’s dictionary data 
structure which inherently makes use of a 
hash table as the underlying mechanism and 
is subsequently used in the implementations 
[17]. 
 
E. Map Reduce 
A reduce-side join algorithm is 
implemented using MRJob, a Python 
MapReduce library. This algorithm 
performs the joining operation in the 
reducer phase of the MapReduce as 
opposed to performing it in the mapper 
phase as done by map-side join algorithms. 
The map-side join algorithm needs small 
tables as it stores them in memory, 
indicating poor performance as the size of 
tables scales [19]. The reduce-side join 
algorithm can be used on any data size 
without restrictions and is therefore 
implemented in this paper [20]. 
The implemented reduce-side join 
algorithm makes use of one mapper phase 
and two reducer phases. In the mapper 
phase, all the input records are read in as an 
iterable array. During each iteration, an 
intermediate key-value pair is generated for 
each record. The key is the primary key in 
one table and the foreign key in another 
table, this being determined by the selected 

column to join on. The value is the entire 
record for that instance of iteration. An 
identifier for records’ table of origin is 
added into the value of the key-value pairs 
and it is used to deal with duplicate records. 
It ensures that all matching keys allow the 
records to be correctly joined as many times 
as they appear in the table. The reducer 
phase then takes these key-value pairs, 
sorting and grouping the values together 
based on matching keys. This grouping is 
the joining of the records. The second 
reducer phase serves only to group all the 
joined records to allow a usable output 
format. 
  

 
 
Fig. 2: Illustration of Reduce-Side Join Algorithm 
 
The main benefit of MapReduce is that it 
simplifies data processing by distribution 
on multiple nodes within a cluster, such as 
Hadoop. The mapper phase would generate 
the key value pair, which is then shuffled to 
the nodes with similar keys being grouped. 
This allows the reducer on a node to do a 
sort on a subset of the data. The reduce-side 
join is implemented serially, making use of 
none of the nodes on a cluster apart from the 
main node that it is run on, hence losing 
many of the speed advantages associated 
with a cluster. This means it will run slower 
for smaller datasets as opposed to other 
implementations. A greater benefit in 
processing speed due to running on a cluster 
is only visible at larger datasets, although 
this is not implemented in this paper [20]. 
The MRJob library is structured to 
specifically provide a 
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simple method of overriding the default 
mapper and reducer phases, and to schedule 
as many of these phases as desired without 
the implementation or changing of any 
settings that may hinder the execution of the 
MapReduce job. As such, the benchmark 
on time is done from the start of execution 
of the MRJob and it ends when the MRJob 
has run to completion. This means that the 
benchmarks include the file reading, 
mapping, reducing and file writing times. 
This is sufficient as the entire paper is based 
around I/O which means it should include 
the insertion of data and the presentation of 
results. 
 
F. MPI 
The MPI equi-join is implemented with the 
MPI4PY library in conjunction with a hash-
join algorithm. Two MPI implementations, 
based off the same hash join algorithm, 
were developed. The first implementation 
utilizes point-to-point communication as 
opposed to the collective communication 
approach in the second variant. Both 
implementations make use of a modified 
“Master-Slave” topology, where the master 
process acts as a controller node and then 
performs computation alongside the other 
slave processes. Once all the computation 
across the processes are complete, all the 
data is retrieved by the master process and 
combined to form the final results. 
The two approaches only vary in how the 
data is passed to other processes. The 
master process reads in both input tables 
into memory. The larger table is identified 
by comparing the number of rows in the 
two input tables. The main two 
implementations are discussed below. 

1) 1) Point-to-Point: In order to split the data 
and computation as evenly as possible, 
table indices are calculated with respect to 
the number of processes and rows 
contained in the table. These sub-tables are 
then sent to the other processes using the 
send command from within a loop. All 
other processes receive their respective 
data, from the master process, identified by 

the tag parameter. The algorithm requires 
the entirety of the other table to ensure that 
there are no keys that are missed during the 
joining process. This table is sent to the 
other processes using the send command. 
The final sub-tables are then calculated and 
sent back to the master process upon 
completion of the hash join function. The 
send command is used by each of these 
nodes to send the data back to the master 
process. 
2) Collective Communication: 
Alternatively, the collective 
communication approach divides the larger 
table into evenly distributed parts, 
considering the number of processes and 
number of rows in the table. This data is 
then distributed using the scatter command 
amongst all the processes, including the 
master. Furthermore, the entirety of the 
smaller table is sent to all processes using 
the broadcast command. Each process then 
performs the hash join on each of these 
tables. The Barrier command is called to 
block all processes until they have reached 
the end of this routine, ensuring 
synchronization amongst the processes and 
preventing deadlock [21]. Once all 
processes are synchronized, the master 
process employs the gather command to 
retrieve all the sub-tables. 
The Broadcast, scatter and gather 
commands are illustrated below in Figures 
3 - 5. The flowchart of the MPI collective 
programs are depicted in Figure 6. 
3) Benchmark: Specific sections of 
code related to the master process are timed 
for benchmark purposes. The benchmark 
  

 
 
Fig. 3: Illustration of Scatter Process 
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Fig. 4: Illustration of Gather Process 
 
metrics include the time take to: read files 
into memory, scatter, broadcast, Barrier, 
send and receive. These results are were 
obtained on input files ranging between 10 
- 100000000 rows and between 1 and 50 
processes running on the cluster. 
 
G. Data Generation 
A Python script was created to produce 
sample data for the testing of the three 
algorithms. The output of this script is 
meant to simulate what real world data 
would look like from a traditional 
structured database. The data has been 
heavily simplified and only contains key 
information pertaining to the joining 
process, such as a key on which the join is 
performed and additional data to simulate 
other columns within the tables. The 
generator has two modes of operation, 
realistic and worst case data sets. 
The worst possible data set that could be 
generated is one where for every key in 
table one there is a corresponding key in 
table two. This proves to be the worst 
possible implementation for an inner join as 
there are no rows missed in the joining 
process. Moreover, both tables are the same 
size meaning that no minimisation can be 
achieved through hashing of the smaller 
table. Lastly, the keys in the two tables are 
generated in reverse order of each other, 
making the data inherently ordered 
backwards between the two tables. 
The best case scenario of data generation 
aims to show a more realistic sample data 
set. Here, one table is created to have a one 
fifth the number of keys as the other table, 
minimising the total number of joins that 
need to be performed by five times. 
 

H. Verification of Results 
Another application was made that took in 
the results of the three scripts and compared 
the results of the joins to ensure that all 
three produced the correct outputs. This 
was done by reading in each table and then 
performing a sort on the rows as some 
algorithms produce differently ordered 
output results. 
  
 
 
 

 
Fig. 5: Illustration of broadcast Process 
 
  
 

 
 
Fig. 6: Flow Chart for MPI Collective 
Communication 
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Next, the results were checked for equality. 
If an error is found, then the user is 
informed accordingly. 
 
I. Controller 
The controller application enables the tester 
to generate required sample data, run all 
three join algorithms as well as the result 
verifier with one command. Run time 
parameters enable the tester to specify the 
number of rows to generate, the number of 
nodes to run the MPI tests on, what 
algorithms they wish to run, and the kind of 
data (best case or worst case) to generate. 
The controller also informs the join scripts 
of what to name their join outputs and 
benchmark result files, based on the user 
input run time parameters. 
 
J. Benchmarker 
Lastly, a script was made to recursively call 
the controller, enabling a batch of 
benchmarks to be run over a range of array 
sizes and node counts. This application 
drastically reduces the total time taken to 
run tests on the system as many tests, in a 
multitude of configurations, can be run 
sequentially. 
 
4. Experiment Environment 
The algorithms were all run on a cluster 
named Jaguar1 that contains 9 nodes. Each 
node has an Intel Core i7 950 CPU @ 
3.07GHz. The cluster nodes have varying 
sizes of 12GB to 24GB memory with some 
nodes utilizing SSD and others HDD. The 
nodes compromise of 4 cores with 8 threads 
each, totalling 72 threads on the entire 
cluster. A machine file is needed to specify 
the nodes to use in the execution of the 
code. 
This set-up is not ideal as it makes no use 
of queueing, resulting in sharing cluster 
resources between different simultaneous 
program executions. This is contradictory 
to the assumption stated in Section X, 
which assumed that the cluster utilization 
would be uncontested during 
benchmarking. As a result, even though the 

benchmark results are accurate, they proved 
to be inconsistent between executions and 
are thus unreliable. The cluster experienced 
a number of issues related to storage space 
as it could not store the temporary files that 
were created during the execution of some 
algorithms. The cluster also suffered from 
instability and would break the connection 
pipe between users and the cluster with no 
reason. Another issue arose from the 
distribution of the MPI data as it would 
evenly distribute the workload between 
uneven nodes as they had different memory 
and disk drive specifications. This resulted 
in faster nodes waiting for slower nodes to 
finish processing their data before they 
were broadcast, introducing a hardware 
overhead in the benchmark tests. 
 
A. Limitations of Experimental Setup 
Despite rigorous benchmarking, the results 
presented are subject to several limitations 
due to the inconsistent nature of the Jaguar1 
cluster. The lack of a job queue led to 
simultaneous execution of multiple 
programs, resulting in contested resource 
usage. Furthermore, node heterogeneity in 
memory and disk specifications introduced 
non-deterministic delays and biased MPI 
timings. These limitations significantly 
reduce the reproducibility and 
generalizability of the results. Future work 
should include repeating the experiments 
on a dedicated, homogeneous HPC cluster 
with queue-managed scheduling to validate 
these performance claims. Additional 
instability was observed due to frequent 
disconnections and limited temporary 
storage, especially when executing 
largescale joins. The variation in hardware 
(HDD vs SSD and memory sizes) further 
caused faster nodes to wait for slower ones, 
skewing MPI benchmark results and adding 
hardware induced delay not reflective of 
algorithmic performance. 
 
5. Results 
A wide selection of tests were performed on 
the each algorithm, totalling 1680 joined 
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tables across the three algorithms. These 
tests were run with the aid of the benchmark 
utility, enabling a programmatic input of 
different sample sizes and node 
configurations to conduct each join. In 
total, close to 5 billion rows where join 
across all tables and algorithms. This 
section presents the results and in the 
following sections these results are 
discussed and analysed. All graphs 
generated are logarithmic in both axis, with 
different lines representing different join 
algorithm configurations, such as 
additional MPI processes. 
Figure 7 shows an average output of all 
three algorithms, with different colours 
representing different operation modes. Not 
all tested configurations are shown in this 
graph but rather key implementations such 
as increasing number of nodes. 
 

  
Fig. 7: Benchmark of All Join Algorithms over a 
Series of Row sizes 
 
Figure 8 represents computation time of the 
different algorithms at a lower row count. 
 

 
  
Fig. 8: Benchmark of Low Row Counts 
 

Figure 9 shows the key testing information, 
used to invert the ideal algorithms for 
different sample sizes. 
Testing results are analysed in the 
following section. 
 
6. Critical Analysis 
Each presented graph was chosen to 
highlight a specific trend present in the 
testing results. 
Reference 7 shows the general trend of the 
algorithms, with the expected pattern of 
increasing computation time 
 

  
Fig. 9: Benchmark of Key Algorithm 
Implementations 
 
with increased row count. From this graph, 
it is clear that the best algorithm below a 
particular size of data set is MPI hash join 
running on one node. Over and above a 
particular size, this is no longer the case. 
This crossover point can be seen in 
Reference 9, clearly highlighting that above 
a sample size of 100,000 rows, MPI hash 
join running on one process is slower than 
MPI hash join running on 4 processes. This 
graph only shows MPI with one and four 
nodes as these were the best results 
obtained from all cluster configurations 
run. 
Reference 8 shows that at low row counts, 
there is no clear trend with increased row 
number but rather that the number of 
processes results in slower computation 
with the MPI implementation. This 
behaviour is as a result of the added 
overhead associated with additional MPI 
processes. The network distribution time 
far outweighs the added computation power 
from spreading the information over a 
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cluster at these low row counts. The 
network I/O is simply much higher than the 
time complexity of conducting the join. 
All three graphs show the naive solution 
quickly ramping up and out of the range of 
the other implementation. This behaviour is 
expected due to the squared time 
complexity of the algorithm. With that said, 
figure 8 shows that below 20 rows in the 
table, the naive solution proves to be the 
fastest joining algorithm, as was predicted 
in the algorithm discussion section of this 
paper. 
The MapReduce join is never the fastest 
solution in any test. This is due to the 
overhead associated with the algorithm, 
primary the creation and deletion of 
temporary files. Figure 3 shows that above 
a 2 million rows, the map reduce 
implementation is faster than the single 
process MPI implementation. Despite this, 
it is still slower than the MPI four processor 
implementation. 
 
A. Selection of Optimum Algorithm 
These results show that there is no single 
possible best solution for all input data 
types and sizes. A hybrid approach is 
therefore proposed wherein different 
algorithms are utilized based on the input 
sample data. If the sample data is below 20 
rows, then the nested for loop join is 
recommended. For joins between 20 and 
100 000 rows, a single MPI implementation 
hash join is recommended. For this sample 
size, there is no benefit in using the MPI 
framework and a standard hash join would 
outperform these results as it would not 
have the associated library overhead. For 
sample size over 100 000 rows, MPI shows 
increased performance, with a four process 
implementation beating the single process 
result. 
Tests were only conducted up to 10 000 000 
rows but over an above this the trend will 
continue, meaning the success criteria that 
scaling computational resources result in 
faster join times was met. Thus, there will 
be a threshold in higher row counts where 

more than four MPI nodes will achieve 
faster performance but benchmarks of 
datasets up to this size were not conducted 
in this paper due to the required 
computational resources required to 
conduct tests of this size. 
 
B. Justification for MPI Scaling Results 
The MPI join algorithm performance 
showed a number of interesting results, 
some of which are contradictory to what 
one would expect. For example, it was 
expected that the total time of the join 
algorithm would drop with added 
computational power allocated to the join. 
This trend was observed only between one 
MPI process and four MPI processes, above 
a specific table size. This indicates that the 
network overhead associated with the MPI 
implementation outweighs the gained speed 
from additional computation power. 
Additionally, there is an inherent overhead 
resulting from how Mpi4py transmits 
information between processes. All Python 
objects are first pickled before being sent, 
resulting in heavy network overhead. These 
results will differ if C was used, for 
example, as this does not require the 
pickling of objects before transmission and 
unpickling after being received [17]. 
The MPI join algorithm running on one 
process was shown to be the fastest 
implementation below a threshold as this is 
effectively the standard hash join algorithm 
implemented in python. There is no 
network overhead due to MPI for this as no 
transmission between processes is required. 
 
C. Future Improvements 
The advantages of MapReduce used in 
combination with a Hadoop cluster are 
never leveraged to compare the processing 
performance of this architecture to MPI. 
This would surpass the serially 
implemented MapReduce through the use 
of a parallelized MapReduce. MapReduce 
with Hadoop should be implemented and 
benchmarked for a more comparative 
analysis with MPI. Future iterations of this 
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study should explore a full MapReduce 
implementation using Hadoop to properly 
leverage distributed parallelism, which was 
absent in the current MRJob setup. The 
current reduce-side join executed serially, 
negating MapReduce’s inherent strengths. 
Additionally, MPI was only benchmarked 
up to four processes due to memory and 
execution limits imposed by the cluster. 
While the results indicate increased 
performance with four nodes, scaling 
beyond this could uncover performance 
ceilings or inefficiencies in collective 
communication patterns. Testing beyond 
four nodes requires access to a more robust, 
dedicated cluster. 
 
D. Security Considerations 
While performance was the primary focus, 
security is a critical aspect in distributed 
data processing. In production 
environments, transmitting sensitive data 
between cluster nodes demands encryption, 
access control, and compliance with 
privacy standards such as GDPR. 
Implementations of distributed joins must 
consider secure communication protocols 
and user authentication, particularly when 
scaling across cloud environments. These 
aspects were beyond the scope of the 
current study but are essential for real-
world deployment. 
 
7. Conclusion 
This paper presented a comparison between 
different table join algorithms, 
implemented in Python. The algorithms 
were discussed in detailed and then 
benchmarked. This showed that a 
distributed, cluster based algorithm, 
implemented with MPI, outperformed a 
parallel algorithm, created with 
MapReduce. The results were critically 
analysed, finding justification for 
performance of each algorithm. Future 
improvements were then proposed, 
providing recommendations as to future 
work. 
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