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Abstract 

This work investigates the classification of 12-lead electrocardiogram (ECGs) to detect 

abnormalities in the heart using three computational techniques. They are: (1) gradient-boosted 

ensembling following manual feature extraction, (2) deep learning with stacked autoencoders 

connected to the output of a multi-layer perceptron (MLP) classifier, and (3) a fusion model 

combining deep-learning and manually extracted features. An experiment is conducted using 

the PhysioNet/Computing in Cardiology Challenge 2020 database, addressing a multi-label 

classification task involving 27 heartbeat rhythm diagnoses. The best-performing model, which 

merges handcrafted features with autoencoder-derived features, achieves an average 

classification accuracy of 30.7% and a challenge metric score of 0.4366. The paper concludes 

by discussing potential improvements in multi-channel ECG classification methods. 

Keywords: ECG Classification; 12-Lead ECG; Feature Extraction; Deep Learning; Autoencoders; 

Gradient Boosting 
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I. INTRODUCTION  

Cardiac conditions still top the global causes of death 

at approximately 80% of deaths related to them, 

mainly due to heart attack and stroke. Twelve-lead 

electrocardiography (12-lead ECG) is the key to 

detecting cardiac pathology and assessing high-risk 

patients. An ECG captures the heart's electrical 

signals from electrodes positioned on the chest and 

limbs, producing waveforms corresponding to 

myocardial depolarization and repolarization. While 

computer-aided ECG analysis is widely adopted, 

current automated interpretation software sometimes 

fails to match the accuracy of specialist cardiologists, 

leading to missed or incorrect diagnoses. 

Technological advances have introduced a variety of 

ECG recording devices, ranging from portable 

single-lead designs to sophisticated clinical 

machines. Consumer-oriented devices like the a six-

lead model, Apple's one-lead Apple Watch, and the 

three-lead Cardio Core wearable demonstrate the 

growing potential for personalized heart monitoring. 

However, in clinical settings, standard 12-lead 

systems produced by manufacturers such as General 

Electric and Philips remain the gold standard for 

comprehensive cardiac evaluation. This paper 

focuses on the traditional 12-lead ECG, which 

provides extensive coverage of cardiac electrical 

signals from various directions and is widely used in 

clinical practice. This study proposes a framework 

that integrates conventional signal processing with 

modern machine learning techniques for multi-label 

classification of 12-lead ECG data. It emphasizes 

three distinct modelling approaches for automated 

detection of various cardiac conditions from ECG 

signals. The study's hypotheses are framed based on 

these approaches: 

• Hypothesis 1: Classic machine learning 

methods like gradient-boosted decision 

trees will perform similarly to, if not better 

than, deep learning methods (using 

autoencoders) in cumulative metrics such as 

the F-measure and general accuracy. 

• Hypothesis 2: For tree-structured 

classifiers, systematic regularization of the 

input feature space and intentional feature 

selection will probably improve the 

challenge metric (a particular contest 

scoring criterion) better than simply 

augmenting the feature set with features 

synthesized by autoencoders. 

• Hypothesis 3: Adding features extracted 

from a deep autoencoder to a decision-tree 

ensemble, along with manually engineered 

features, is expected to improve the overall 

classification accuracy of the model. 

II. CONTRIBUTIONS 

The main contributions of this research are 

summarized as follows: 

• Traditional feature-based classifier: We 

created a structured approach to classifying 

12-lead ECG signals with deep manual 

feature extraction followed by an ensemble 

of gradient-boosted trees. It was entered in 

the PhysioNet/CinC 2020 Challenge [11], 

where it attained a validation challenge 

score of 0.476 and a test (hidden set) score 

of –0.080, ranking 36 out of 41 valid 

submissions in the official ranking. 

• Deep learning autoencoder classifier: We 

employed a deep learning approach using 

stacked autoencoders to obtain concise 

representations from segmented heartbeats 

and then a sequence model to predict full 

ECG records. Without access to official test 

data for this method, performance was 

assessed using Monte Carlo cross-validation 

within the public dataset (20 random 

80/10/10 training-validation-testing splits). 

The model using autoencoder achieved an 

average challenge score of 0.248 on these 

test splits. While its overall accuracy was 

less than the feature-based model, the deep 

model yielded slightly better sensitivity to 

some conditions – for instance, incomplete 

right bundle branch block (IRBBB), left 

anterior fascicular block (LAnFB), 

prolonged PR interval, and right-axis 

deviation (RAD). 

• Hybrid feature–embedding ensemble: 

We created a hybrid modelling approach 

that combines manually crafted features 

with feature learning from autoencoders to 

train an improved set of gradient-boosted 

tree classifiers. Compared to the purely 

manual method, the hybrid approach 

employs feature selection at the level of 

individual labels instead of one global 

ranking feature. The winning configuration, 

labelled “Top 1000 Features + 

Embeddings,” chose the top 1000 most 

significant features for each diagnostic label 

and produced a test-split challenge score of 
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0.4366 – well above the remaining 

configurations assessed within the study. 

III. METHODOLOGY  

Deep Autoencoder + MLP Classification 

(Architecture Details): In our implementation, the 

stacked autoencoder comprised multiple fully 

connected layers to encode each heartbeat segment 

into a low-dimensional embedding. Each heartbeat 

(segmented via a standard R-peak detection 

algorithm with a fixed window length around each 

QRS complex) was resampled to a uniform length 

(approximately 500 samples) and fed into an encoder 

network with three dense layers of 256, 128, and 64 

neurons (using ReLU activations). The encoder’s 

bottleneck layer produced a 64-dimensional latent 

vector representing the heartbeat. A symmetric 

decoder (64→128→256 neurons, ReLU activations, 

and a linear output layer) was trained to reconstruct 

the input waveform from this embedding. We trained 

the autoencoder on the training set heartbeats for up 

to 100 epochs using the Adam optimizer (learning 

rate ~0.001) with mean squared error as the loss, 

employing early stopping if reconstruction error on a 

validation subset did not improve for 10 consecutive 

epochs to prevent overfitting. After obtaining per-

beat embeddings, a sequence model was used to 

aggregate these into a record-level representation. 

Specifically, we employed a one-layer LSTM with 

128 hidden units: the sequence of heartbeat 

embeddings for an ECG record was fed into the 

LSTM, and the final hidden state (128-dimensional) 

was taken as the record-level embedding. (We also 

experimented with simple averaging of the heartbeat 

vectors as a pooling strategy, but the trainable LSTM 

encoder performed comparably and retained 

temporal information about beat sequence.) This 

record-level embedding was then input to a multi-

layer perceptron classifier. The MLP classifier 

consisted of two dense hidden layers (128 and 64 

neurons, ReLU activations) and an output layer of 27 

sigmoid neurons (one per diagnosis) to produce 

multi-label predictions. We applied a dropout rate of 

0.2 in the MLP to improve generalization, and 

optimized the classifier using binary cross-entropy 

loss (with Adam, learning rate 0.001). During 

supervised training of the MLP, we fine-tuned the 

encoder and LSTM weights (which were initially 

learned in the unsupervised phase) – we found that 

allowing fine-tuning improved validation 

performance slightly compared to keeping the 

encoder frozen. The autoencoder and classifier were 

trained for roughly 50 epochs (with early stopping on 

validation loss) in each cross-validation fold. This 

deep architecture, including its regularization 

(dropout and early stopping), was designed to 

balance model complexity with the risk of 

overfitting. The result was an end-to-end deep 

network that first compresses beats into latent 

features and then learns to classify entire ECG 

records from sequences of those features. However, 

as discussed later, this complex model did not 

outperform the simpler approaches. 

IV. RESULTS  

A Comparison of classification performance metrics 

on the test split for the XGBoost ensemble across 

different feature selection strategies is shown in 

Figure 1. The horizontal axis labels “A” through “J” 

correspond to the ten model configurations detailed 

in Table I (in order). Plotted values include the 

PhysioNet Challenge score (the primary metric) 

alongside secondary metrics such as overall accuracy 

and F1-score, all summarized over 20 cross-

validation runs. Each colored marker, along with its 

error bar or box, shows the distribution (mean and 

variance) of a given metric for each configuration. 

The figure highlights the trade-offs in performance 

when using all features, the top-1000 features, or the 

top-100 features, with and without incorporating 

autoencoder embeddings. 

 

Fig 1. Comparison of classification performance metrics. 

The Output of the Wilcoxon signed-rank test 

analyzing the distributions of the Challenge metric 

for all pairs of model configs is shown in Figure 2. 

The entry in the matrix is the p-value for the null 

hypothesis the corresponding pairs of configs' 

performance is the same; darker hues represent lower 

p-values. The cells marked by the symbol (*) 

correspond to statistically significant differences at α 

= 0.001. For example, configs with aggressive feature 

pruning by selecting Top 100 features have different 

configuration performance than some others (p < 

0.001 in those rows), uncovering the impact of the 

feature selection approach. Smaller p-values in 
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general (dark blue cells in the heatmap) reflect 

configuration pairs where the performance had 

differed significantly, uncovering the modelling 

choice (label-specific selection of features, including 

embeddings, etc.) with the resultant impact on the 

Challenge score. 

 

Figure 2. Wilcoxon signed-rank test distributions 

V.DISCUSSION 

The findings of our research emphasize a few key 

points, consistent with observations by other 

researchers. First, the inclusion of automatically 

learned deep features did not yield a performance 

gain, in line with comments by Bengio et al. that 

simply adding deep models to standard machine 

learning pipelines may not improve results. In our 

case, the gradient boosting ensemble achieved strong 

results with carefully selected time-domain and 

morphological features alone, and the added 

complexity of the autoencoder-derived features did 

not pay off in improved scoring. One likely reason is 

that the unsupervised autoencoder learned latent 

features that were not well aligned with the 

discriminative features needed for classification – the 

tree models could not effectively utilize the extra 

information when those deep features were 

essentially abstract combinations of raw signals. 

Furthermore, using deep features as input to a 

shallow classifier reduced interpretability of the 

system; it became difficult to trace which ECG lead 

or waveform characteristic contributed to a given 

autoencoder feature, obscuring the reasoning behind 

a particular prediction. 

Several factors may explain why the autoencoder-

based deep model underperformed the traditional 

feature-based model. Model depth and complexity: 

The deep autoencoder and LSTM introduced a large 

number of trainable parameters, increasing the risk of 

overfitting given the effective amount of labelled 

training data (43,000 records – substantial, but small 

relative to the complexity of a deep network). 

Training the autoencoder to reconstruct signals, 

while useful for unsupervised feature learning, does 

not guarantee that the learned features are optimal for 

distinguishing arrhythmias. The deep model might 

require even more data or more aggressive 

regularization to realize its potential, whereas the 

simpler XGBoost models could generalize well with 

the available data. Over-compression bottleneck: By 

compressing each heartbeat (hundreds of sample 

points) into a 64-dimensional code and then 

compressing an entire sequence of beats into a 128-

dimensional record vector, the autoencoder may have 

discarded subtle but important information needed to 

differentiate certain diagnoses. This information 

bottleneck can hurt classification – for example, fine-

grained timing differences or low-amplitude 

waveform nuances might be lost in the compression. 

Mismatch between learned vs. discriminative 

features: The autoencoder was optimized to minimize 

reconstruction error, not to maximize classification 

accuracy. Thus, it likely learned features capturing 

dominant morphological patterns (to faithfully 

rebuild signals) rather than the specific anomalies 

that signal different arrhythmias. Those latent 

features could be “orthogonal” to the features that 

best separate classes, making it hard for the MLP (or 

the hybrid model’s trees) to translate them into better 

predictions. In short, the deep model’s abstract 

features did not add significant new predictive signal 

beyond what the manually engineered features 

already provided. Consequently, we failed to support 

Hypothesis 3 – incorporating unsupervised deep 

features did not significantly enhance classification 

accuracy or the Challenge metric in this study. 

Another important aspect is data quality. The public 

ECG dataset had several limitations that we did not 

fully address in preprocessing, and these likely 

affected all models’ performance. There was evident 

label noise and inconsistency – for example, some 

records were clearly bradycardic (heart rate < 60 

bpm) yet not labelled as such, and there were cases of 

low-voltage QRS complexes being labelled as atrial 

fibrillation or other rhythm abnormalities. We also 

observed instances where the distinction between 

atrial fibrillation and atrial flutter was inconsistently 

labelled. Such mislabels (or missing labels for certain 

conditions) introduce confusion during training: the 

classifiers might learn to predict “incorrect” patterns 

or ignore certain abnormalities because they are not 

reliably annotated. Additionally, the ECG signals 
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showed significant artifacts in some cases – e.g., 

baseline wander that led to unrealistic voltage shifts, 

or extremely low signal-to-noise ratios where true 

P/QRS/T waves were barely discernible. We did not 

perform advanced filtering or artifact removal 

beyond basic normalization, meaning the models had 

to cope with this noise. These dataset issues (noisy 

signals, missing or incorrect labels) likely prevented 

higher accuracy. Even an ideal algorithm would 

struggle if some arrhythmias are unlabelled or if 

noisy recordings are present with misleading labels. 

In future work, refining the dataset by removing or 

relabelling questionable records and reducing 

artifacts could lead to overall improvements in model 

performance. Ultimately, the limitations of the 

training data – including label noise, incomplete 

annotation of certain arrhythmias, and various ECG 

artifacts – constrained the accuracy achievable by 

both the shallow and deep learning approaches. We 

recognize that our choice to apply minimal 

preprocessing was a trade-off: it preserved data 

quantity and variability but came at the cost of 

introducing more noise. Addressing these data 

quality challenges will be essential to further enhance 

model performance. Lastly, we note that our choice 

of classifier and feature set also influences outcomes. 

We used gradient-boosted trees (XGBoost) for the 

feature-based models due to their robust handling of 

high-dimensional data and strong performance in 

many settings. It would be valuable to explore 

whether other classifiers (e.g., SVMs or random 

forests) using the same manual feature set could 

achieve similar results – perhaps the boosted trees 

had no special advantage beyond being well-tuned 

for this task. Moreover, our manual feature 

generation yielded thousands of features using 

general time-series libraries. While this broad 

approach helped initial performance, it likely 

included redundant or irrelevant features. A more 

targeted feature design using clinical expertise 

(focusing on known ECG markers for each condition) 

could produce a smaller, more interpretable feature 

set that rivals the larger set in accuracy. This could 

improve efficiency and transparency, as the model 

would rely on medically meaningful features. 

VI.CLINICAL IMPLICATIONS 

From the clinical point of view, the study shows the 

promise and the limitations of automated ECG 

classification. The algorithms were more accurate in 

some cardiac conditions than others. Notably, 

conditions with specific waveform changes were 

identified more reliably. For instance, bundle branch 

blocks and axis deviations – conditions with definite 

morphological changes in ECG – were some of the 

best-identified conditions. The deep-learning model 

had modestly higher sensitivity for conditions like 

incomplete right bundle branch block (IRBBB), left 

anterior fascicular block (LAnFB), prolonged PR 

interval, and right-axis deviation than the feature-

based one. This makes sense, because these 

conditions affect specific intervals or waveforms 

(e.g., the QRS shape for IRBBB, the measurable 

interval of the PR for prolonged interval) that the 

algorithms – more specifically the autoencoder – 

were tuned to identify. When compared with other 

scenarios, the models underperformed in situations of 

mild, transient arrhythmia or otherwise noise-

influenced situations. For example, separating atrial 

fibrillation from atrial flutter or other atrial 

'arrhythmias proved challenging partly due to 

inaccurate categorizations in the datasets the models 

were trained on and partly because underlying 

features of AF (such as an irregularly irregular 

rhythm and an absence of P-waves) could easily be 

obscured or masked by noise or other atrial activity. 

Likewise, conditions of low-amplitude T-wave 

abnormalities or subtle ischemic changes were the 

most difficult to identify because they involve the 

detection of fine waveform variations neither 

captured adequately by our features nor by the 

autoencoder. Occasionally, the algorithms would 

make erroneous predictions – for instance, 

identifying a record to have a “T-wave abnormality” 

where the signal was noisy and where there were no 

visible T-waves, revealing likely false alarms caused 

by artifacts. Generally, high-amplitude or timing-

based abnormalities (e.g., blocks and axis shifts) 

were more easily identified by the algorithms than 

were rhythm disorders or low-voltage changes 

hidden in noise. Balancing false alarms and missed 

events is important in evaluating clinical utility. Our 

top-performing model – a hybrid ensemble – tended 

to favor sensitivity for some diagnoses due to the 

weighting of the challenge metric. This caught more 

cases of severe arrhythmias but resulted in some false 

alarms. For instance, the model sometimes marked 

recordings as atrial fibrillation where irregularity 

resulted from motion artifacts. Such false alarms 

might result in unwarranted testing were it to be used 

in clinical practice. Misclassifications were also seen 

in recordings where baseline wander or noise was 

severe – the model outputted AF, atrial flutter, or “T-

wave abnormality” where no actual arrhythmia was 

present. Left uncontrolled, these false alarms might 

lead to alarm fatigue in clinical environments. 

Conversely, the models at times missed arrhythmias 

detected by the cardiologist – e.g., infrequent 

premature beats or minor ST-segment shifts in 

ischemia suspicion. Incidentally, some records with 

overt bradycardia (severely slowed heart rate) were 

neither marked nor detected by the model, 
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presumably because bradycardia was sporadically 

tagged in the training material. Omitting such 

important events (false negatives) is especially 

troublesome in medicine because it would result in 

the patient’s clinical status being undertreated. 

Though we did not report sensitivity for life-

threatening arrhythmias per se because the setup is 

multi-label, the modest total sensitivity suggests 

some clinically significant events would routinely be 

omitted by the model in its present incarnation. It’s 

also important to interpret the metrics of the 

performance in context. Our top model obtained 

around 30.7% overall accuracy in the test-split, by 

which we mean the complete list of multi-label 

diagnoses was correct in approximately one-third of 

cases. At first, 30% accuracy might appear poor in 

comparison to the average single-label task. All the 

same, in the multi-label classification task of 27 

possible diagnoses, this is not directly comparable to 

90% accuracy in e.g. the two-class task. The random 

guess or the frivolous classifier would obtain way 

below 30%, hence the model is undoubtedly 

extracting signal from the information. Nonetheless, 

from the clinical point of view, 30% accuracy (as 

well as the Challenge score of ~0.4366) is way from 

being enough for one’s own diagnostic usage. In 

practice, it would mean the algorithm’s output set of 

diagnoses for an ECG would be correct in the full set 

simply less than one-third of the time – quite 

insufficient for clinical decision-making. Doctors 

cannot tolerate missing 70% of the diagnoses or 

tolerating constant false alarms in the everyday 

workflow. At the current performance level, the 

model is best thought of as a decision support tool 

instead of an independent diagnostic system. For 

instance, model performance could pre-screen or flag 

some ECGs; even at 30% accuracy level, the model 

may mark ECGs as potentially abnormal for further 

consideration or provide a suggested list of 

conditions for clinicians to consider. This may 

highlight cases that may go otherwise unnoticed and 

provide a “second set of eyes”. False alarms would 

need to be low though; too many false positive alerts 

is a recipe for clinicians to lose trust in the system. In 

our these results, the precision for some conditions 

were low and associated with many false positives. 

This illustrates the need for further refinements so 

these alerts are more specific. Overall, we have 

demonstrated proof of principle that the current 

model achieves accuracy and error rates for multi-

label ECG classification with traditional and deep 

features combined, but the system is not yet clinically 

useful. There is much room for improvement, 

especially where it comes to improving sensitivity for 

critical arrhythmias and reducing false positives 

before such a model could meaningfully decrease 

either missed events or false alarms in the context of 

cardiac monitoring. Improvements such as more 

complete and reliable data, adding additional leads or 

patient data, or using more sophisticated 

architectures (i.e. transformer or attention models 

appropriate for the 12-lead ECG), may be the key to 

attaining the accuracy needed for clinically 

meaningful use. 

VII.CONCLUSION 

This study presented and compared three different 

methods for multi-label classification of 12-lead 

ECG records. As a starting point, we applied a 

methodology using conventional signal processing 

and extensive feature extraction with a shallow 

gradient-boosted trees ensemble. Second, we built a 

deep “beat-to-sequence” autoencoder model to 

autonomously learn features from raw ECG signals 

and used its embeddings within an MLP classifier. 

Lastly, we experimented with a hybrid approach, 

where deep autoencoder features were integrated 

with manually extracted features in an ensemble of 

gradient-boosted trees (with label-specific feature 

selection). The experimental evaluation addressed 

the hypotheses from the introduction. We confirmed 

Hypothesis 1: the classic feature-based ensemble 

performed better than the purely deep learning 

approach in terms of the Challenge metric and F-

measure, supporting our expectation that a 

thoughtfully designed shallow model can rival or beat 

a deep neural network in this setting. We partially 

confirmed Hypothesis 2: prioritizing regularization 

of the feature inputs – through pruning and selecting 

the most informative features – was more beneficial 

than simply adding more features from the 

autoencoder without selection. In other words, 

judicious feature selection improved the Challenge 

score more than the naive inclusion of additional 

deep features. We did not find support for 

Hypothesis 3: combining deep autoencoder-derived 

features with the handcrafted feature set did not 

produce a statistically significant increase in 

classification performance. Despite the intuitive 

appeal of enriching the feature space with 

unsupervised learned features, our best results were 

achieved by the hybrid model with label wise top-

1000 feature selection of autoencoder embeddings – 

and even that was on par with, not significantly 

above, the purely manual feature model. This 

winning configuration attained an average Challenge 

score of 0.4366 and an overall accuracy of ~30.7% 

on our test splits. These figures, while modest in 

absolute terms, were the highest in our comparisons. 

They highlight that combining traditional ECG 

features with modern machine learning can yield 

competitive results, but also that the deep features did 
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not offer a breakthrough improvement given our 

approach. In conclusion, our work illustrates both the 

potential and the challenges of multi-label 12-lead 

ECG classification: with careful feature design and 

model tuning, a relatively interpretable model 

(boosted trees on engineered features) can perform on 

par with a deep learning model, and a fusion of the 

two can work if feature selection is employed. 

However, the lack of a clear performance boost from 

the autoencoder features suggests that future deep 

learning efforts need to capture information 

complementary to what traditional features provide. 

We believe that incorporating more advanced deep 

architectures (e.g., 12-lead convolutional or 

transformer networks) and improving data quality 

will be important steps forward. The metrics 

achieved here set a baseline, but are not yet at a level 

for clinical adoption – bridging that gap will require 

both algorithmic innovations and perhaps new forms 

of model validation focusing on clinical relevance 

(e.g., reducing critical arrhythmia misses and alarm 

fatigue). 

VIII. FUTURE WORK 

There are multiple valuable avenues for further 

research to develop this work. One main focus is 

improving and augmenting the dataset. As we 

observed, the current training dataset is impacted by 

label uncertainty and other issues. Taking measures 

to clean the dataset - e.g., fixing mislabelled records, 

excluding excessively noisy ECG records, if any, 

ensuring labellers adhere to a well-defined set of 

labelling criteria - would likely improve model 

performance significantly. Furthermore, adding more 

data, particularly for under-represented arrhythmias, 

and/or utilizing data augmentation techniques, may 

similarly improve the generalization of deep learning 

models to previously unseen cases. 

Another avenue that would be most valuable to 

explore would be assessing other lead arrangements 

and modalities. For instance, the dataset from the 

PhysioNet/CinC 2020 Challenge used 12-lead ECGs, 

but the 2021 Challenge was based on 2-lead 

recordings. The exploration of the features-based and 

hybrid models with minimizing number of leads 

would provide information on the robustness of the 

models, and potentially lead to modifications to the 

models, such as features that are most relevant to 

specific leads. On the other hand, the incorporation 

of some additional sources of complementary 

information, such as demographics of patients or 

symptoms, could provide additional context to the 

model - e.g., some arrhythmias are seen more 

commonly with older patients, or patients who have 

certain risk factors. 

On the modelling side, cutting-edge deep learning 

techniques for time series hold strong potential. 

Transformer-based architectures, in particular, have 

shown great success at capturing long-range 

dependencies in sequential data. Recent studies, such 

as work by Natarajan et al., have demonstrated that 

“wide and deep” transformer models can process raw 

12-lead ECG waveforms alongside derived features 

to achieve state-of-the-art arrhythmia classification. 

Extending these transformer approaches to our multi-

label task – perhaps combined with the expert 

features we developed – is a natural next step. Such 

models might uncover subtle waveform patterns or 

lead interactions that our autoencoder or manually 

engineered features missed. 

To conclude, expanding the classification paradigm 

to a larger set of ECG findings would improve the 

clinical utility of the model. Our work, like the 

referenced challenge, was limited to 27 diagnoses but 

real-life ECG interpretation requires the 

consideration of a....future work could try to train a 

more comprehensive multi-label model that 

consisted of additional arrhythmias and ECG 

abnormalities (e.g., more subtle ST/T changes, 

patterns of hypertrophy, etc.). While this would 

create new challenges (e.g., larger number of classes, 

extreme imbalance in the data), any success in this 

domain would propel us closer to achieving the 

concept of an AI generalist assistant for ECG 

interpretation. In conclusion, the follow-up steps are 

performed in parallel: improvements in data, 

experimenting with more advanced deep learning 

architectures (while maintaining interpretability), 

and incorporating more diagnostic categories into the 

model's training - all in the interest of establishing 

some degree of reliability and clinical 

meaningfulness of an ECG classifier. 
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