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Abstract: We consider a fully directed self-avoiding walk model on a cubic lattice to mimic the 
conformations of an infinitely long flexible polymer chain and also to mimic confirmations of a 
short flexible chain under confined conditions. The confinement conditions is achieved using two 
parallel impenetrable plates. The confined chain is under good solvent conditions and we revisit 
this problem to solve the real (self avoiding) polymer's model for any length of the chain and also 
for any given separation in between the confining plates. The equilibrium statistics of the confined 
polymer chain are derived using analytical approach of the generating function technique. The 
force of the confinement, the surface tension and the monomer density profile of the confined 
chain are obtained analytically. We propose that the methods of calculation are suitable to 
understand thermodynamics of an arbitrary length confined polymer chain under other possible 
conditions of the confinement. 
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1. Introduction: A lattice model of a self-
avoiding walk (SAW) has been widely used for 
the past a few decades to understand the 
conformational statistics of a confined short 
polymer chain under various geometries, and 
the lattice models were also used to understand 
the equilibrium statistics of a polymer chain in 
the bulk [1-3]. Therefore, there are a variety of 
interesting results on thermo-dynamical aspect 
of a short and an infinitely long flexible 
polymer chain in the bulk, and also for a short 
and an infinitely long polymer chain under 
various geometries [4-7]. Such studies 
revealed a wealth of information regarding 
scaling behavior/universal properties and 
phase transitions in the polymer 
macromolecules. These reports gave us 
understanding of the steric stabilization of the 
polymer dispersions, colloidal solutions, thin 
films, and such studies were relevant for 
surface coatings and sensors [3,5,7-9]. 

 

Though, there are a couple of facts that are not 
well understood regarding an infinitely long as 
well as a short polymer chain for their three-
dimensional confined geometries, e. g., 
variations of thermo-dynamical properties 
(force of the confinement, entropic surface 
tension, monomer density profile, etc.) of a 
confined self-avoiding flexible polymer chain; 
and hence it requires an investigation to 
understood a few such aspects which we shall 
discuss for three-dimensional confinements 
here. 

We have chosen a directed walk model [3] for 
a self-avoiding polymer chain to understand 
the thermo-dynamical properties of an 
infinitely long flexible chain. Also, we report 
results for a short flexible polymer chain to 
understand the thermodynamics of the chain 
under the proposed confined geometry. The 
confinement condition is achieved around the 
polymer chain using a pair of impenetrable flat 
plates (as shown in figure 1); the plate’s 
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separation is measured in a unit of a monomer 
length. Thus, the separation of the confining 
plates is varied from one monomer length to 
the size of the polymer chain. 

2. Model and method: We use theory of 
critical phenomenon to understand the Physics 
of a single polymer chain merely because a 
linear polymer chain is a critical object [3,5,7]. 
Therefore, there are several reports on the 
thermodynamics of a single polymer chain. 
These reports on the statistics of the single 
polymer chain and chain's statistics so obtained 
correspond to a condition that the chain is 
under very dilute solution [1,3,7,10-13]. We 
confine our discussion to the model of a fully 
directed walk of a confined flexible polymer 
chain.  

 

 
 

Figure 1: An N monomers long confined flexible 
polymer chain is shown in figure 1. A pair of 
impenetrable parallel plates confine the self-
avoiding/real polymer chain. The lower plate is 
located at x = 0, and the upper plate is located at x = 
L; one end of the polymer chain is grafted at a point 
O on the lower plate, i.e., on the plate located at x = 
0. 

 

It is also to be highlighted that there are several 
reports on the adsorption-desorption phase 
transitions of a confined chain and there are 
reports on conformational statistics of a 
confined polymer chain under various 
geometries; the author tried his best to refer to 
some of the results for the sake of literature 
survey on the issue of confined polymer chain 

under specific geometries.  

2.1 Fully Directed Self Avoiding Walk 
(FDSAW) Model: A lattice model of the fully 
directed self-avoiding walk [3] is widely used 
to understand the thermodynamics of an 
infinitely long polymer chain under various 
geometries. Since a directed walk model is 
solvable analytically; therefore, we have exact 
results on single-chain statistics using a 
directed walk model. It is well known that the 
qualitative nature of the phase diagram for a 
directed walk model is the same as to that of its 
isotropic version [10]. It is assumed that the 
first impenetrable plate is placed at x = 0 and 
another impenetrable parallel plate is placed at 
x = L, where the value of L = 1, 2, 3, ...., ∞; and 
the parameter L is measured in the unit of a 
monomer length; and the confined real/self-
avoiding polymer chain is schematically 
shown in figure 1. A condition of L≥N 
corresponds to a polymer chain in the bulk. 

In the case of a fully directed walk model in 
three dimensions, it is known also that the 
walker is allowed to take steps only along +x, 
+y, and +z directions in between two parallel 
plates, and along +x direction walker can take 
the maximum L (≤N) steps while the walker can 
take any number of steps (N) along remaining 
other two directions, i.e., along +y and +z 
directions.  We have conformations (CN

L) of an 
N monomers long polymer chain in between 
two parallel plates, where one end of the chain 
is grafted at the corner (O) of the lower plate (x 
= 0). Thus, we have a condition of the 
confinement provided L<N. A general 
expression of the grand canonical partition 
function for an infinitely long confined self-
avoiding flexible chain is written as: 

𝐺(𝑔, 𝑧) = ∑ ∑ 𝑔𝑧ேି   ௪௦  ே ௦
ஶ
ேୀଵ                        

(1) 

A symbol g refers to the step fugacity of the 
walker along a direction parallel to the plane of 
the confining plates. At the same time, z is the 
step fugacity perpendicular to the plane of the 
confining plates. There are P monomers of the 
chain lying in the plane of the parallel plates, 
and  remaining (N-P) monomers are located 
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perpendicular to the plane of the plates for an N 
monomers long confined polymer chain. 

 

3. Results:  A lattice model is often used to 
obtain an equilibrium statistics of an infinitely 
long confined flexible polymer chain and a 
short-confined polymer chain [3,5,7]. We 
obtained the exact results on the 
conformational statistics of a flexible self-
avoiding polymer chain for its confinement 
using two parallel impenetrable plates; the 
analytical calculations are given below for a 
short-confined chain and an infinitely long 
confined flexible polymer chain, separately. 

 

3A. The equilibrium statistics of a confined 
Self Avoiding flexible polymer chain using 
Grand Canonical Ensemble (GCE) 
approach: An exact expression of the grand 
canonical partition function for an infinitely 
long confined flexible polymer chain is 
obtained for different possible values of the 
plate separation (L); and also, for the bulk 
case, the partition function of the chain may be 
written as (N≥1 and L<N), 

 
𝐺(𝑔, 𝑧) = ∑ [(2𝑔) +ே→ஶ

ୀଵ

∑ 𝑧{
∏ (ିொାଵ)಼

ೂసభ

!
(2𝑔)ି}]

(ஸ)→ஶ
(ஸ)ୀଵ                                      

(2) 

We were able to recover an expression for the 
grand canonical partition function of the chain 
for the bulk case [10] by substituting z = g 
(when L≥N and N→∞) in equation 2. The first 
term on the right-hand side of equation 2 
corresponds to the conformations of the chain 
lying on the lower plate (i.e., at x = 0). A 
simple form of the expression for the grand 
canonical partition function for the bulk case 
(i.e., for an infinite separation between the 
parallel plates and the chain length infinity) 
may be written as: 

 

𝐺(𝑔, 𝑧, 𝐿 = ∞) =
௭ାଶ

ଵି௭ିଶ
                                                                                                                

(3) 
 
The partition function of an infinitely long 

polymer chain is obtained for a finite 
separation (L) in between the confining plates. 
Accordingly, we calculate the thermo-
dynamical properties of the confined chain. It 
is well known that the critical value of the step 
fugacity is 0.5 for a finite separation (L) in 
between parallel plates, and the critical value 
of the step fugacity is 0.33 for L ≥ N and N→∞.  
 
We use canonical ensemble formalism to 
obtain an exact number (CN

L) of a real flexible 
polymer chain conformation, and accordingly, 
the equilibrium statistics of the chain are 
obtained for a case when a pair of 
impenetrable parallel plate confines the 
polymer chain; an exact number of the 
conformations is written as follows for a case 
when L<N, 

    1

1

1 2 . 1
2 2

!

N
L N N L
N

L

N N N N L
C

L






    
       

                   (4) 

We have many conformations (CN
B) of a 

chain for a case when this short flexible chain 
is in the bulk (L≥N), and the number of the 
conformations for the bulk (L≥N) case is 
written as: 

𝐶ே
 = ∑ 𝐶

 + 1 = 3ேேିଵ
ୀଵ                                                                              

(5) 

3B. Equilibrium statistics of a confined Self 
Avoiding flexible polymer chain using 
Canonical Ensemble approach: An effect of 
the confinement is shown in figure 2, where a 
fraction of the polymerized (CN

L) and a 
fraction of non-polymerized (1- CN

L) short 
polymer chain conformations are 
demonstrated for a set of values of the plates 
separation (L); and the chain length is an N 
monomers. We have divided the terms CN

L 
and (1- CN

L) by 3N to obtain the said fraction 
of the polymerized and non-polymerized chain 
conformations, respectively.  
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We have calculated the force [1,2,9] of the 
confinement (fN

L) acting on a short polymer 
chain of an N monomers due to parallel plates, 
and the force is acting perpendicular to the 
plane of the plates while the separation in 
between the plate is L. While calculating the 
force, the free energy of the self-avoiding 
polymer chain is written in a unit of the thermal 

energy as E(=-kBTLog[CN
L]), and thermal 

energy (kBT) we have taken unity. Therefore, a 
graph between fN

L versus L and for an N 
monomers length chain is shown using figure 
3(a). The following equation gives the force of 
the confinement as: 

𝑓ே
 ≅ −𝐿𝑜𝑔[2] +

𝜕{
𝐿𝑜𝑔 ∏ (𝑁−𝐿+1)𝐿

𝐿=1
𝐿!

}

𝜕𝐿
   

 

                                    (6) 
 
The above equation (i.e., equation 6) is 
simplified to the following relation to seeing 
that fN

L =-Log[2]-Log[L/N]. Thus, the force 
bears logarithmic singularity provided L<N, 
L≥1, and N→∞ for an infinitely long chain. 
 

𝑓ே
 ≅ 𝐿𝑜𝑔[

ே

ଶ
]                                                                  

 
(7) 
 
                                     

 
(a) 

 
(b) 

                                                                                                                
Figure 3: The force of the confinement which is 
acting perpendicular to the plane of the plates, and 
its nature of variation for a few sets of (N, L) has been 
shown in this figure 3(A) for a short chain of length 
an N monomers and we increase the separation in-
between plates (L=2, 4, 6, 8 and 10) in a unit of 
monomer length. Figure 3(B) shows nature of 
variation of the confining force per monomer of the 
confined chain for set of N, L values. 
 
The entropic surface tension ( L

N ) of a short-

chain and an infinitely long confined real 
polymer chain solution may be obtained using 
the following relation: 
 

 L
N

E

A





                                                                                        

(8) 
 

Where E(=-kBTLog[CN
L]) is the Helmholtz 

free energy of a short polymer chain under 
confined geometry; and, again, we have taken 
the value of the thermal energy (kBT) equal to 
unity for the sake of mathematical simplicity. 
The maximum change in the area is [(N-L+1)2 

- (N-L)2]/2 when the walker steps one unit 
along the x-direction, and the plate separation 
varies in the unit of one monomer length. For 
a confined chain, LMax=N-1. It is to be noted 

Figure 2: We have shown in figure 2, an average 
number of the polymer chain’s conformations (1-
CNL)/3N which were not polymerized due to a pair 
of an impenetrable plate’s confinement. The 
curves for CNL/3N and (1-CNL)/3N intersect at 
the 50% value of the 
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here that the surface tension for the present 
case has an entropic origin, and the value of the 
surface tension for a self-avoiding confined 
chain is written as: 

 

 
 

 2 2

1 1
2 2  

2 !2L
N

Log L Log
Log LN

N L N L N L


   
        

  
                              

(9) 

The nature of variation of the entropic surface 
tension of a short polymer chain with 
confining plate separation is shown in figure 
4. 

We have also calculated the monomer 
number density ( L

N ) profile, and a plot on 

the density profile for the confined flexible 
chain is shown in figure 5; we have an exact 
expression for the number density of an N 
monomers long chain, and the density is 
written as follows: 

   
 

1 1 1
[2 ] 

!
L N L
N

N N N L

L N L
      




                                       

(10) 
 

 

 
 
Figure 4: A plot on the entropic surface tension ( L

N
) of a short polymer chain (N =11, 12, ..., 30 
monomers) confined in between a pair of parallel 
plates is shown in this figure, and the plates are 
separated by a distance L (= 1, 2, ..., 10) monomers. 
 
The monomer number density profile is shown 
in figure 5 for the confinement condition of a 
short flexible polymer chain for the given 
values of L. For L=0 and for a non-zero value 

of L, and for a confined chain (L < N), the 
monomer density profile is written as equation 
10. 
 

 
 
Figure 5: This figure shows the logarithmic value of 
the number density profile of a real flexible polymer 
chain. The length of the polymer chain (N) is varied 
from 11 to 30 monomers, and the separation (L) of 
the parallel plate is varied from 1 to 10 monomers. 
 
4. Discussion: A lattice model of the fully 
directed self-avoiding walk is used to mimic 
the conformations of an infinitely long and a 
short confined flexible polymer chain, where 
the polymer chain is confined by a pair of 
impenetrable parallel plates (as shown 
schematically in figure 1). The confined 
regions in between a pair of parallel plates lead 
to different values of the step fugacity for the 
walker along and perpendicular to the plane 
of the confining plates. Therefore, along the 
plane of the plates, we have one value of step 
fugacity (i.e., g), and in a direction 
perpendicular to the plane of the confining 
plates, we have another value (i.e., z) of the 
step fugacity. We used the generating function 
method to solve the model analytically; and we 
obtained a general expression for the grand 
canonical partition function of an infinitely 
long self-avoiding flexible polymer chain for 
any given value of plate separation (L).  
We have also obtained an exact expression of 
the canonical partition function for a short 
flexible self-avoiding polymer chain. The 
chain is made of an N monomers; the plate 
separation equals L monomers. We calculated 
an exact percentage of the polymer 
conformations which were not polymerized 
(suppressed) due to the confinement conditions 
imposed on the chain by the pair of parallel 
impenetrable plates. We derived expressions 
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for the force of the confinement, the entropic 
surface tension, and the monomer number 
density profile for a short-chain length of an N 
monomers and we derived a condition when an 
infinitely long chain is confined by the pair of 
plates for the plate separation L. 

We have plotted (CN
L)/3N, i.e., the number of a 

confined flexible polymer chain conformations 
of an N monomers long polymer chain along 
with the conformations, i.e., (1-CN

L)/3N, which 
is suppressed due to the confinement, for 
different values of the plate separation (L); and 
we have shown the polymerized and 
suppressed fractions of the conformations in 
figure 2. It is seen from this figure that as we 
increase the length of the chain for a given 
value of the plate separation (L), the 
percentage of the polymerized chain’s 
conformations decreases. Accordingly, the 
percentage of the non-polymerized/suppressed 
conformations increases due to the 
confinement. It is also found that the 
percentage of the polymerized conformations 
increases for a given length of the chain as the 
separation between the plates increases. The 
force of the confinement is a function of the 
chain length and the separation between the 
confining plates. It is found from analytical 
calculations that the force of confinement 
decreases logarithmically as we increase the 
plate separation for a given length of the 
confined chain. While the force of confinement 
increases logarithmically as we increase the 
length of the confined chain, provided the plate 
separation is retained constant. We have shown 
the nature of confining force which acts on a 
short polymer chain, in figure 3 for a set of N 
and L values. 

 
The entropic surface energy per unit surface 
area (i. e. the entropic surface tension) for a 
confined flexible chain is shown in figure 4; it 
is seen that the surface tension of the confined 
chain increases for a given length of the chain 
as we increase the length of confinement, and 
it starts decreasing after a particular value of L. 
The surface tension of a confined chain also 
increases for a given value of L as we increase 
the number of monomers in the confined chain. 

An actual dependency of the surface tension on 
N and L is shown in figure 4, and the 
mathematical form of the entropic surface 
tension is given by equation 9. Though we 
have a very dilute chain concentration, 
therefore, the entropic surface tension of a self-
avoiding confined flexible polymer chain 
vanishes in the thermodynamic limit. The 
monomer number per unit areal extension of 
the confined flexible chain is shown in figure 
5. It is seen from this figure that the monomer 
density increases as the length of the chain 
increases and L remains fixed, and also the 
monomer density increases as we increase L 
for a given length of the confined chain. The 
nature of the free energy curve for a confined 
short chain is also shown in figure 6 for the 
completeness. It is seen from figure 6 that in 
the thermodynamic limit, the free energy per 
monomer of the confined flexible chain is 
Log[gc(2D)]-1, where gc(2D) = 0.5. 

We have taken a factor α = (L/N) to report the 
confining force, the entropic surface tension, 
the monomer number density, and the free 
energy of a confined chain in terms of α (<1, 
for a confined chain); and accordingly, we 
have plotted these thermo-dynamical 
parameters in the thermodynamic limit in 
figure 7 for the sake of completeness. 
Therefore, we have these thermo-dynamical 
parameters that may be written in the thermo-
dynamical limit (N→∞) as (i. e. for an 
infinitely long confined chain): 

 

   log 2L
Nf Log                                                                                    

(11) 

 
 

  
 2

2 12 2
*

1 1
L
N

LogLog
N




 


  

 
                                                                      
(12) 

      1 2 1
L
NLog

Log Log
N


  

      

                                                       (13) 

and finally, the free energy per 
monomer(ε=EN

L/N) of a confined chain is 
written as: 
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     1 2Log Log        
                                                                                                    
(14) 

 
Figure 6: We have shown the free energy graph of 
a confined flexible polymer chain for the given 
values of L and N in this figure. The Helmholtz free 
energy is a function of N and L, and the free energy 
is approximated as EN

L ≂-NLog[2]+LLog[2]-
LLog[N]+LLog[L]-L. The thermal energy is set to 
unity for the sake of mathematical simplicity. 

A method of calculations reported in this 
manuscript may be easily extended to calculate 
the thermodynamics of an infinitely long and a 
short self-avoiding polymer chain confined to 
a length L for other versions of the 
directed/isotropic walk models on different 
possible lattices. It is also to be noted from 
reports that the qualitative nature of the phase 
diagram obtained for an isotropic self-avoiding 
walk model is the same as that of the phase 
diagram of a directed walk model of the 
problem [10], and therefore, our findings may 
be relevant to understand the thermodynamics 
of a confined three-dimensional polymer 
chain. 

Our calculations include entropy of the 
confined chain where those conformations 
were chosen, which are in the form of polymer 
bridges or polymer trains, though we have not 
considered the loop-like conformations; 
However, the entropy of the confined chain has 
a monotonous variation with N and or L for 
other versions (i.e., isotropic or partially 
directed walk model of the confined chain) of 
the confined polymer models; therefore 
physical insight will remain same for the 
confined chain when one includes polymer 

loop like conformations for such studies. It is 
also to be noted that in the presence of another 
confining plate (i.e., a plate located at x = L), 
the entropy of the chain is reduced due to 
excluded volume interaction among the 
monomers of the confined chain. Hence, many 
chain conformations are suppressed for any 
value of L<N, i.e., not polymerized.  

 

Figure 7: This figure no. 7A shows the force of the 
confinement acting on the chain as a function of α 
(as shown in the equation 11); the entropic surface 
tension of an N monomers long chain is shown in 
the figure (7B), and the equation 12; the logarithmic 
value of the monomer density per monomer is 
shown in the figure (7C), and the equation 13; and 
also, the free energy per monomer of the confined 
chain (ε) is shown in the figure (7D), and equation 
14, as a function of α. 

5. Challenges: There are limitations regarding 
visualizing a macromolecule in the restricted 
geometries, though we have reports on single 
macromolecule manipulations [11] and please 
also see the references quoted therein. 
Therefore, we can expect that it may be 
possible to track single macromolecule and 
measure its physical properties under the 
confined geometries soon.  

6. Conclusion and Future Scope: The lattice 
model of a polymer chain has limitations, as 
the lattice model mimics discrete links of the 
monomers of a chain. Therefore, finite length 
fluctuations related physics of the system may 
have different results from real situations of the 
polymer Physics. Still, in the case of phase 
transitions, there are fluctuations of all length 
scales. Correlation length extends to the size of 
the confined chain length. Therefore, the phase 
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transitions which occur in the thermodynamic 
limit may not have any sensitivity regarding 
the finite and non-zero size of the monomers. 
Though there are studies based on continuum 
models of the polymer chain, it has been found 
that the Physics of polymer chain derived using 
continuum and discrete models have a 
qualitative similarity [1,3,5,11, 16].  
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