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Abstract: Quantum learning paradigms address the question of how best to harness conceptual 
elements of quantum mechanics and information processing to improve operability and 
functionality of a computing system for specific tasks through experience. It is one of the fastest 
evolving framework, which lies at the intersection of physics, statistics and information 
processing, and is the next frontier for data sciences, machine learning and artificial intelligence. 
Progress in quantum learning paradigms is driven by multiple factors: need for more efficient data 
storage and computational speed, development of novel algorithms as well as structural resonances 
between specific physical systems and learning architectures. Given the demand for better 
computation methods for data-intensive processes in areas such as advanced scientific analysis 
and commerce as well as for facilitating more data-driven decision-making in education, energy, 
marketing, pharmaceuticals and healthcare, finance and industry. 
 
Introduction: Quantum 1.0 was the 
revolutionary utilization of quantum resources 
for technology, primarily electrical and optical, 
such as transistors and optical masers, while 
Quantum 2.0 was about harnessing non-
classical elements in the quantum formalism 
such as entanglement for information 
processing (1–15). Quantum mechanics have 
been used for undertaking information 
processing tasks such as teleportation, 
superdense coding, remote state preparation, 
quantum tomography, quantum cryptography 
and quantum key distribution, circuit-based 
and measurement-based quantum computing, 
quantum network coding and quantum 
internet, quantum random walks and quantum 
transduction (16–55). What can be called as 
Quantum 3.0 would be the harnessing of 
quantum resource and representation theory 
for a novel computational learning paradigm, 
along with quantum generalizations of existing 
classical computational learning models 
(56,57). This is the next frontier of exploration 
in the quantum realm and seeks to address the 
question: can we fundamentally reframe and 
re-envision learning models when the 
information-system and/or process is quantum 
mechanical in nature?  

The term ‘machine learning’ was coined by 
Arthur Samuel in 1959, in the context of a 
‘looking- ahead’ algorithm implemented on a 
classical computer for a game of checkers, 
realized using a neural net approach with 
randomly connected switching net as well as 
an approach involving a highly organized 
network designed to learn only specific things 
(58). In 1961, the punched-tape system known 
as Cybertron K-100 by Raytheon was 
developed as an early learning system that 
employed pattern recognition on sound 
samples, such as those from sonar signals, for 
learning (59). Basic pattern recognition, 
storage and referencing were the primary 
elements that supported the learning 
framework in the next few decades, such as 
with the work on feed forward networks with 
one layer of modifiable weights connecting 
input units to output units, in what could be 
called reflexive systems that could discover 
hidden relationships in data (60, 61). Machine 
learning addresses the twin questions of what 
fundamental information theoretic laws 
govern all learning systems and how could one 
construct computing systems that can improve 
their functioning through experience (62). For 
various applications, training based on a 
limited set of inputs and outputs obtained from 
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a system for specific empirical task seems to 
be more optimum than trying to predict the 
generalized response of the system in all 
circumstances. 
 
Learning, in the context of information theory, 
describes the improvement of a yardstick or 
performance criterion for a system for a given 
task. For instance, we could seek to classify 
Iris flowers into three species: Iris adriatica, 
Iris taochia and Iris kemaonensis from a 
defining characteristic such as the cumulative 
length measurement of their petals and sepals. 
The yardstick index could be how accurately 
the classification takes place, and the training 
could be over a historical sample of irises from 
a phytologist’s collection. We could also 
employ other criteria that have different 
penalties for incorrect classification. There are 
a number of algorithms for machine learning 
that are applicable to different kinds of datasets 
and problem types. Machine learning 
algorithms probe through various candidate 
models, based on training data and experience, 
to find the one that is optimum for the selected 
performance metric. The diversity of machine-
learning algorithms can be segregated based 
on their manner of representation of candidate 
models (such as decision trees) and their 
manner of probing through the space of 
candidate models (such as evolutionary search 
methods). 
The question is whether loading our 
phytological data into quantum states can 
make this classification better. We could create 
a parameterized quantum circuit or ansatz to 
do this, using a feature map. Any 
parameterized quantum circuit should be able 
to generate maximum number of quantum 
states in the Hilbert space and also have ability 
to entangle constituent qubits. It turns out that 
the variational quantum classifiers (VQCs) 
help classify the irises efficiently, using 
optimizers such as the constrained 
optimization by linear approximation 
optimizer (COBYLA). It is this interface of 
quantum mechanics and machine learning that 
provides various possibilities: machine 
learning with quantum computers, classical 
learning for quantum mechanical problems 

and generalized quantum learning theory. 
Quantum machine learning brings together the 
learning capability and scalable nature of 
machine learning and the speed, efficiency and 
processing power of quantum computers. 
There have been several classical learning 
paradigms that have had quantum analogues 
proposed and realized: quantum neural 
networks, quantum reinforcement learning, 
quantum support vector machines, quantum 
linear regression, cluster detection and 
assignment algorithms, quantum principal 
component analysis and quantum decision tree 
classifier (63–70). In this comprehensive 
review of quantum learning paradigms, we 
will be looking at the spectrum of algorithms 
and protocols, before moving on to 
understanding the conceptual shift that this 
may provide when assessing learning theory 
from the perspective of quantum phenomenon. 
 
Quantum Patterns: The underlying premise 
for the utility of the quantum realm for 
machine learning has to do with the emergence 
of classically anomalistic patterns in data. 
Among phenomena that are intrinsically 
quantum in nature, an interesting example is 
that of quantum revival patterns, where we 
find superposed and displaced replicas of the 
initial state of the system (71–74). Quantum 
Kerr systems have such a kaleidoscopic mode 
of evolving, which is found to be reproducible 
based on interference of trajectories in the 
classical phase space (75). In the quantum-
classical limit, where Planck’s constant h¯ → 
0, it is seen that observables behave differently, 
leading to the preservation or disappearance of 
significant variables and their stochastic 
tendencies, such as for oscillator coordinate 
and spin variable respectively (76). Even in the 
case of skyrmions, we cannot simulate 
quantum skyrmions on classical 
supercomputers due to fundamental 
limitations, particularly around quantum 
fluctuations (77). Quantum patterns are seen as 
periodic magnetic formations that are 
spontaneously formed in antiferromagnetic 
Bose-Einstein condensate (78). When 
ultracold atoms form quantum ferrofluids, we 
find a spontaneous development of coherent 
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quantum density patterns leading to the 
formation of a super-solid (79). When 
nanoscale lead films grown on silicon 
substrates are annealed to high temperatures, 
we observe intricate quantum patterns in the 
energy landscape (80). A beat pattern emerges 
in the quantum magnetoresistance of polar 
semiconductors without a centre of inversion 
symmetry, such as InAs/GaSb, when the 
carrier concentration is high (81). Patterns are 
ubiquitous in quantum chemistry, in properties 
such as chemical hardness and 
electronegativity (82). 
 
Given the ability of classical computers to both 
produce and recognize classical statistical 
data, the extrapolation would be that systems 
that produce classically atypical data, like in 
quantum systems, would also be able to 
recognize such data. This gives us the 
possibility of harnessing the quantum analogue 
of complex classical pattern recognition. 
Pattern recognition compares data input with 
specific memorized patterns, as it processes 
this input. Quantum pattern recognition 
provides a number of advantages over its 
classical counterpart. For instance, if we 
assume a Hopfield network approach for 
pattern recognition, we do so by local 
optimization, while utilising a quantum 
approach such as adiabatic quantum 
computation does so using global optimization 
(83). A realization of this was using the liquid-
state NMR technique, where some of the 
interesting insights included the possibility of 
representing a superposition of recognized 
patterns using a quantum neural register (84). 
The parallelism inherent in quantum 
phenomena such as entanglement facilitate the 
execution of subroutines, even with big data, 
and this is one of the primary reasons for 
quantum machine learning, in general, being 
regarded as being better than its classical 
counterpart. Among pattern recognition 
protocols, one-class classification is important 
due to its applications in areas where detection 
of abnormal data points vis-a-vis instances of 
a known class is needed, using techniques such 
as support vector machines and principal 
component analysis (85–90). This helps in 

addressing problems where we have 
imbalanced datasets, such as in metaheuristics, 
medical image datasets, manufacturing, high-
energy physics and bioinformatics (91–98). 
Recently, a semi-supervised quantum one-
class classification system known as 
Variational Quantum One-Class Classifier 
(VQOCC) was developed using (99). At the 
centre of this proposition is a quantum 
autoencoder, which is basically a circuit that 
undertakes compression of a quantum state 
onto a lesser number of qubits while retaining 
the information encapsulated in the initial state 
(100, 101). Quantum autoencoders have been 
applied to quantum data compression, 
quantum error correction, denoising of data 
and even for preserving entanglement (102–
105). 
 
An important question to be addressed here is 
what can be categorized as a quantum pattern. 
Is it just an arbitrary pattern of quantum 
randomness? Is it the byproduct of a quantum 
pro- cess, such as in cold exciton gases? Is it 
the quantum analogue of classical patterns in 
nature? Harney and Pirandola defined a 
quantum pattern as an m-mode coherent state 
undergoing local kary modulations (106). We 
can also define patterns in the information 
dynamics associated with quantum systems, 
such as in the case of quantum computing and 
communication systems (107). Examples 
would include basis encoding, quantum 
associative memory, amplitude encoding, 
angle encoding, QRAM encoding, quantum 
kernel estimator, variational quantum 
algorithm, variational quantum eigensolver, 
quantum associative memory, amplitude 
amplification, phase shift, oracle operations, 
quantum approximate optimization algorithm 
and quantum key exchange. Along with 
information theoretic arrangement and 
elements as well as quantum data types and 
quantum data structures, we can also specify 
entanglement structures to define the notion of 
quantum patterns (108). There are various 
kinds of entanglement patterns, from 
maximally entangled Dicke states to partially 
entangled cluster states. Even the outcome of 
measurements successively performed on an 
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open quantum system have a pattern because 
of the interaction between system and 
environment. The pattern encapsulates 
information on non- Markovian memory effect 
and the relaxation rates associated with the 
system (109). The primacy of quantum 
patterns can also be seen within phases of 
matter, which can be distinguished by distinct 
symmetry breaking instances - within the 
Landau theory, symmetry of ordering of 
constituents of a physical system differentiates 
one phase from others. In certain systems, such 
as chiral spin liquids, even without symmetry 
breaking, we have different characteristics due 
to what is known as topological order, which 
has been posited to describe entanglement in 
many-body systems (110). 
 
Quantum Algorithmic Resource-Pool: The 
central question around assessing the 
possibilities in quantum machine learning is 
whether we have the algorithmic tools in the 
quantum domain for the same. A quantum 
algorithm is a succession of instructions for 
tackling a problem on a practical quantum 
computer (111). Cleve et al. highlighted that a 
common thread underlying all quantum 
algorithms can be as- certain when “quantum 
computation is viewed as multiparticle 
interference” (112). By and large, we have 
quantum search algorithms, quantum 
simulations of quantum systems on a quantum 
computer and algorithms premised on 
quantum implementations of the Fourier 
transform like Shor and Deutsch-Josza 
algorithm. Quantum supremacy or the 
enhancement of computational ability using 
quantum systems over that of classical 
counterparts has heralded the age of noisy 
intermediate-scale quantum (NISQ) 
technologies (36, 113). One of the earliest 
quan- tum algorithms came with by 
formulation of an algorithmic solution to a 
special case of the hidden subgroup problem 
by Peter Shor (114). Quantum Merlin-Arthur 
(QMA) completeness of a problem highlights 
that a supposed solution to it can be verified by 
a quantum computing system - a condition that 
has been extended to k unentangled provers in 
QMA(k) class problems (115, 116). When it 

comes to claims of quantum supremacy, we 
often speak of speedup, resource reduction, 
scaling and ability to address greater number 
as well as variety of problems. Quantum 
speedup can be contextually defined in terms 
of the asymptotic behavior of the ratio of the 
times taken by a specific classical and quantum 
algorithm for a particular problem when the 
size of the problem is made to be very large 
(117). Speedup can be provable, like in 
Grover’s algorithm, while in some cases the 
enhancement due to the quantum effects is not 
obvious, like in quantum annealing (118, 119). 
Quantum resource optimization is seen in 
realization of randomness processing with 
quantum Bernoulli factories (120). 
 
The reason for enhancement of computational 
power, when it comes to machine learning and 
data analysis, with quantum machine learning 
arises due to the inherent primacy, within 
quantum mechanics, of high-dimensional 
vector spaces and, more importantly, matrix 
transformations between vectors in such 
spaces, as is important for data analytics and 
machine learning methods. The speedup is 
especially pronounced when the matrices 
being dealt with have an element of sparseness 
or are low-rank matrices (121, 122). A classic 
example arises in a key tool used for machine 
learning - principal component analysis, which 
evaluates the eigensystem (and corresponding 
principal components) of the covariance 
matrix of data. Using a quantum random 
access memory, we initialize the vectors for a 
classical principal component analysis 
protocol onto quantum states and utilise the 
density matrix of the states (instead of the 
covariance matrix), which when exponentiated 
and operated on by a conditional SWAP 
operation for the quantum phase algorithm, 
yields the eigensystem that forms the premise 
of the principal component analysis (67). The 
algorithmic scaling is to the order of the square 
of the logarithm of the size of the system, in 
query as well as computational complexity. 
Essentially, the quantum principal component 
analysis scales exponentially faster than the 
classical counterpart. 
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While quantum principal component analysis 
is an unsupervised method that identifies pat- 
terns within higher-dimensional data for the 
reduction of data complexity with the retention 
of most of the information, there are various 
supervised learning algorithms that have had a 
quantum implementation (123). One such 
algorithm relates to quantum support vectors. 
Support vector machines undertake regression 
and classification using the delineation of 
feature vectors of the data into distinct classes 
around a hyperplane that is at maximum 
distance from the nearest data-points in either 
classes around it (124). If the data is not 
separable into distinct classes, we can use the 
kernel trick to project the data into a higher-
dimensional space- a pursuit that by Cover’s 
theorem can help in attaining separability in 
the data-set (125). Quantum algorithms such as 
Grover’s algorithm are premised on binary 
classification. Even in cases of machine 
learning algorithms based on adiabatic 
quantum evolution, we define our approach in 
terms of a strong classifier that discerns 
whether a data-point is correct or erroneous 
based on a program specification (126). Like 
in the classical case, the quantum support 
vector machine relies on the definition of a 
quantum kernel that we can create by using a 
quantum feature map ϕ( ⃗x) between classical 
feature vectors ⃗x and a Hilbert space to help us 
obtain the kernel K( ⃗xi, ⃗xj) = |⟨ϕ( ⃗xi)|ϕ( ⃗xj)|2. We 
can then expand the hyperplane in the general 
form: f( ⃗x) = Σi αiyiK( ⃗xi, ⃗x), where αi denote 
bounded positive quantities and yi the data 
labels. We can then use measures like the 
Gaussian or Rademacher Complexity to 
evaluate the classification error, based on this 
hyperplane definition and the data-set (127). 
While the quantum support vector machine 
paradigm defined using Grover’s algorithm 
gives a quadratic speedup, the implementation 
using the least squares approach provides an 
exponential speedup over classical algorithms 
(64). In recent years, we have had quantum 
support vector machine implementations with 
the Newton method, amplitude estimation, 
gradient descent and using quantum annealers 

as well as variational quantum-circuitry (128–
132). 
 

 
 
 Figure 1: Swap Test 
 
A natural extension of this comes with 
quantum k-nearest neighbour algorithms. 
Instead of a hyperplane as in the case of 
support vector machines, the underlying 
assumption of k-nearest neighbour methods is 
that the likelihood of two data-points that are 
proximal being of the same type is high (133). 
Labelled training vectors are used as reference 
for comparison of unlabelled testing vectors to 
determine k nearest train-state neighbours for 
the specific testing vector-state, whose label is 
ascertained using majority voting. In the 
quantum picture, we use the concept of fidelity 
of a specific testing state |ψ⟩ with respect to 
multiple training states |ϕj⟩: Fj = |⟨ψ|ϕj⟩|2.  After 
taking an initial set of candidate neighbour 
states, we use quantum search algorithms to 
find other states and corresponding indices till 
the nearest neighbours are found. The 
functional way to obtain the fidelity is by using 
the swap test. In this test (Figure 1), we begin 
with two quantum states |a⟩ and |b⟩ along with 
an ancilla qubit initialized to |0⟩anc, on which 
we apply the Hadamard operation on the 
ancilla qubit. We thereafter apply a controlled 
swap operation on the ancilla qubit. A 
controlled swap operation is a gate where 
target qubits |a⟩ and |b⟩ are swapped if the 
control (in this case, the ancilla qubit) is in the 
state |1⟩. Applying a second Hadamard gate on 
the ancilla gives us the state |χ⟩ = 1/2 |0⟩anc(|a, 
b⟩ + |b, a⟩) + 1/2 |1⟩anc(|a, b⟩ − |b, a⟩).  
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The measurement of the state |0⟩anc has the 
associated probability P(|0⟩anc) = 1/2 + 1/2 
|⟨a|b⟩|2. The inner product in this expression 
makes the overlap between the states primary: 
orthogonality gives us a probability of 0.5 
while maximum overlaps gives a unity 
probability. This method can be used to find 
the distance between real-valued multi-
dimensional vectors with the use of a quantum 
measurement (69). We can also undertake 
more rigorous pattern recognition between 
binary strings |a1, a2, ..., an⟩ and |b1, b2, ..., bn⟩, 
using an extension of the construction in the k- 
nearest cluster model by initializing a state |ψ⟩ 
= |a1, a2, ..., an, b1, b2, ..., bn⟩⊗ √1 (|0⟩+|1⟩)anc, 
undertaking a XOR operation between the 
respective (ak, bk)∀k before storing it in place 
of the bk∀k, and finally undertaking a 
Hadamard operation on the ancilla qubit (134).  
If we measure the ancilla qubit in the ground 
state |0⟩anc, we obtain a resultant state whose 
amplitude has a scaling characteristic 
dependent on the Hamming distance between 
the binary strings. 
 
Quantum Reinforcement Learning and 
Deep Learning: Going beyond supervised or 
unsupervised machine learning models, a 
major area of contemporary research has been 
in quantum-enhanced reinforcement learning, 
which is premised on the adaptive evolution of 
a quantum system based on reinforcement 
from a classical or quantum environment 
(135). The system receives percepts from the 
environment and undertakes actions. Unlike in 
conventional learning models, the learner in a 
reinforcement learning model has an influence 
on the state of the environment around it as 
much as it is influenced by it, thereby making 
it impossible to represent the environment in 
terms of a stationary memory. Both - the 
system and the environment, are stored as 
maps with memory, and the history of 
interactions between the two is the 
fundamental element in reinforcement 
learning. In the case of quantum reinforcement 
learning (QML), this history must be 
maintained in a quantum setting. In QML, we 

define a Hilbert space for the percept and 
action states- HS and HA respectively.  
 

 
 
Figure 2: Quantum Reinforcement Learning (QRL) 
is premised on testing agent-environment interaction 
where the percept and action states have distinct 
Hilbert spaces associated with them. The register RT 
is not controlled by the agent or by the environment. 
 
The agent and environment both have memory 
registers (RA and RE respectively) to store the 
histories of the system-environment 
composite. We can model the interaction with 
a distinct Hilbert space HC and we can 
characterize the agent (environment) my a 
series of Completely Positive Trace Preserving 
(CPTP) maps {MiA}i ({MiE }i) that acts on a 
resultant register formed by concate- nation of 
the registers of system-interaction RARC 
(environment-interaction RCRE) systems. The 
performance of the system-environment is 
assessed against a figure of merit. Dunjko et al 
showed that a quantum agent will outperform 
a classical learning agent associated with a 
clas- sically delineated, controllable epochal 
environment against a particular figure of 
merit, if we were to consider a selected 
classical sporadic testing element (136). The 
quantum enhancement arises from being able 
to extract additional attributes from the 
environment for optimization of a classical 
agent. Our point of interest is in environments 
that are quantum in nature and that facilitate 
the preservation of superposition of percepts 
and actions. 
When we are talking of quantum 
reinforcement learning, it is imperative to 
discuss what we mean by quantum 
accessibility. Quantum accessibility implies 
the utilization of access of the agent to the 
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environment for the simulation of an oracle Oq 
that behaves as follows: 

 
where R is the value of the ’reward’ that the 
agent obtains once it successfully executes the 
actions a1, a2, ..., ak, for some auxiliary state 
|x⟩. In the cumulative process, we see the 
utilization of a quantum interaction using what 
is known as oracularization with the 
environment to undertake effective simulation 
of access to the oracle (which encapsulates 
important information about the environment), 
followed by the usage of this information for 
determining behavior that is optimum in the 
given environment. We can attain a greater 
insight into the oracularization process by 
understanding the import of an auxiliary state, 
which usually comprises of percept states |s1, 
s2, ..., sk⟩, the reward state |R⟩ and |e1, e2, ..., ek⟩  
that are auxiliary quantum subsystems kept 
within the environment. For the simulation of 
the oracle, these states need to be con- trolled 
and erased (137). To undertake this, the agent 
should be able to undertake modification of 
specific memory components of the 
environment with what are known as register 
scavenging and register hijacking operations, 
followed by a way to ’uncompute’ with the 
implementation of the Hermitian adjoint of the 
net unitary (map) that the environment 
implements. There are two primary kinds of 
reinforcement learning paradigms with 
specific quantum realizations: value-based, 
like in the case of Q-learning, which is 
premised on the learning of a value function 
that guides how the system environment 
makes decisions at each time step, as well as 
policy- gradient methods that optimizes a 
policy (function) π(a|s; θ) using the parameter 
θ (138–141). An important concept in this 
regard is meta-learning, wherein the learning 
agent undertakes the identification of its meta-
parameter configuration that is optimum so as 
to be able to facilitate the optimization of 
performance. This parameter meta-learning is 
done by having the learning agent monitor its 
performance, and utilising a metaparameter 
register as well as techniques like adaptive 
Bayesian quantum estimation (142). The 

reduction of the agent-environment interaction 
to a unitary oracular query is not feasible when 
we consider memory effects. In general, the 
oracular element may vary temporally and in 
such scenarios amplifying amplitude using 
Grover-type methods may be a possible 
approach to undertake reinforced learning in 
reward spaces that have an increasing 
monotonicity in the success probability. 
 
Deep learning has also seen a quantum 
expansion in recent years. Deep learning is 
premised on using artificial neural networks 
for discovering the representations required for 
the detection and classification of features 
from raw data (143, 144). The basic unit of a 
neural network is a perceptron or a single 
artificial neuron. Gallant described one of the 
first perceptron-based connectionist models 
where each cell i computes a single activation 
ui, which may be input to other cells or be an 
output of the network (145). Ricks et al. gave 
one of the earliest quantum neural network 
models based on implementation of quantum 
circuitry with gates whose weights are evolved 
through learning using quantum search as well 
as piecewise weight allocation (146). In each 
step, we have a density operator for the qubits 
representing the hidden states, which can can 
be extracted with any output ancilliaries using 
a partial trace operator and fed forward to the 
next layer of the neural network where the 
unitary transformations that encapsulate the 
action of perceptrons can be applied. There 
have been recent works on Bayesian 
approaches being implemented using quantum 
algorithms to learn Gaussian processes to train 
neural networks that are arbitrarily deep, with 
a quantum matrix inversion protocol being the 
core routine (147). In the quantum 
convolutional neural network presented by 
Cong et al (148), the modeling of the 
convolutional layer is in terms of a unitary 
transformation (on the state density of the 
input) that is quasi-local and is applied in error 
correction and phase recognition in quantum 
systems. The forward pass of the convolutional 
neural network can be computed as a 
convolutional product using quantum 
algorithmic tools even as gradient descent 
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methods can give us an idea about what are the 
relevant network parameters in the quantum 
context (149). There have also been hybrid 
models with quanvolutional layers in the 
network where we undertake local 
transformation of the data with several random 
quantum circuits in the set bounded-error 
quantum polynomial time (150). Recently, 
quanvolutional methods were used for 
physiological application such as for body part 
recognition using Hybrid Quantum 
Convolutional Neural Networks, although in 
this case the classical counterpart was found to 
have a greater validation accuracy by 0.5% 
(151). 
Quantum Natural Language Processing, 
Quantum Advantage and the Path Forward 
Language is one of the earliest forms of 
representative evolution for humankind. 
Notwithstanding the tale of the Tower of Babel 
or the Gigantomachy myth, the diversity and 
complexity of language is of prime interest for 
computational representation and processing. 
Natural language processing is all about 
harnessing computational methods for the 
learning and production of content in human 
languages. We have come a long way from 
simply analysing the disparate linguistic forms 
and recognizing speech patterns to the 
creations of dialogues, translating speech from 
speech as well as the identification of 
emotional response of users towards services 
and products. The synchronic model of 
language aligns with the psycholinguistic 
understanding which highlights that language 
is dynamic (152). In any speech-based natural 
language pro- cessing (NLP) system, we have 
computation based on phonetic, phonemic and 
prosodic rules, besides the morphemic analysis 
which is as relevant for other kinds of NLPs as 
well (153–155). Higher levels of natural 
language processing include the lexical, the 
syntactic, the semantic, the discourse-oriented 
and the pragmatic (156). When it comes to 
natural language processing, we can have 
quantitative statistical approaches like the 
Hidden Markov models, connectionist 
approaches that are based on inter-related 
fundamental processing units as well as 
symbolic ap- proaches that lay emphasis on the 

logic or rules that a linguistic framework 
encapsulates. Zeng and Coecke were among 
the first to give us a quantum version of natural 
language processing when they employed the 
closest vector problem for sentence similarity 
identification within the distributional 
compositional categorical (DisCoCat) model 
given by Coecke, Sadrzadeh and Clark (157–
159). In the compositional distribution model, 
meanings are encapsulated in quantum states 
while quantum measurements give us the 
grammatical structure for a specific sentence 
and context (160). The embedding of the 
language in the vector space of quantum 
systems naturally leads to word-correlations 
represented by the vector geometry, even as we 
map diagrams formed from parsing of 
sentences to quantum variational circuits. 
Essential quantum properties such as 
superposition helps us in the modelling of 
uncertainties in the language while phenomena 
like entanglement help us in describing how 
semantics and syntax are com- posed and 
distributed. Recently, natural language 
processing experiments have been practically 
realized for over 100 sentences on the Noisy 
Intermediate-Scale Quantum (NISQ) 
computing system provided by IBM Quantum 
(161). 
 
When we speak about quantum natural 
language processing, in particular, and 
machine learning, in general, the elephant in 
the room is: how much of an advantage do we 
obtain using quantum systems over classical 
ones? The ’quantum native’ view of quantum 
natural language processing which posits that 
the vector-landscape provided by quantum 
systems is better suited for the linguistic- 
syntactic, semantic and pragmatic elements, is 
preliminary and unsubstantiated by practical 
realizations, with a critical shortcoming being 
the primary reliance on quantum RAMs, which 
are expensive and not yet empirically 
implemented. More broadly, there are many 
aspects of quantum computing that are often 
off-set by machine learning paradigms.  
 
For instance, the size of inputs is usually small, 
such as in fault-tolerant algorithms, while there 
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could high-dimensional tensorial structures 
with numerous entries in machine learning. 
The problems in machine learning can be 
highly unstructured and complex while 
problems studied in quantum computing are 
structured, often with elements of regularity 
and periodicity. Theory is defined and 
delineated in quantum computing problems 
while empiricism is preeminent in machine 
learning, with modelling and interpolations 
being important in the latter. Quantum 
computing can have absolute benchmarks like 
the scaling of run-time while machine learning 
have more constructivist benchmarks between 
disparate models. Quantum advantage can be 
spoken of in terms of solvability, expressivity 
of the class of the model, size of training 
sample needed, generalizability and how the 
optimization landscape is structured (162–
171). Due to the need to be able to capture the 
system dynamics in terms of quantum systems 
and circuitry, we can only gauge performance 
of machine learning algorithms in specific 
selected contexts and examples, with this 
selectivity preventing any generalizability of 
performance-based ad- vantage, if any. Such 
constraints also exist for readout and loading 
of data, when it comes to quantum examples. 
Performance parameters are also highly 
contextual and it is not straight-forward to 
assess if any ’quantum advantage’ is due to the 
specific way in which we have selected 
benchmarking threshholds and hyper-
parameters or whether they are actually 
observations made structurally. There may be 
a need to move towards studying Quantum 3.0, 
the revolution of quantum learning theory, as a 
paradigm in itself, without needing to resort to 
bylines towards ’quantum advantage’ and 
’quantum supremacy’. For example, classical 
intractability of kernels being bypassed using 
quantum tools can be an interesting pursuit but 
given that such kernels are not found to be 
utilizable in realizable machine learning, such 
an approach has no practical relevance. Today, 
we have moved beyond kernel methods with 
even more efficient ones like data re-uploading 
and explicit models (172, 173). We now have 
quantum machine learning models that have 
features that preserve privacy as well as those 

that take into consideration the impact of 
decoherence (174, 175). The future is bright 
for quantum machine learning, even as the 
intersection of quantum mechanics, learning 
theory and information processing is explored 
to find novel methods of deploying artificial 
intelligence. 
 
Competing Interests: The Author declares no 
Competing Financial or Non-Financial 
Interests. 
 
Author Contributions: The author 
formulated the premise, undertook the analysis 
and wrote the paper. 
 
References and Notes: 
 
1. N. Bloembergen, Y.-R. Shen, Physical 
Review 133, A37 (1964). 
2. T. L. Paoli, J. E. Ripper, Physical Review A 
2, 2551 (1970). 
3. K. Lehovec, Physical Review 75, 1100 
(1949). 
4. R. Hall, IRE Transactions on Electron 
Devices 7, 1 (1960). 
5. D. Deutsch, Proceedings of the Royal 
Society of London. A. Mathematical and 
Physical Sciences 400, 97 (1985). 
6. R. P. Feynman, Optics news 11, 11 (1985). 
7. A. Peres, Physical review A 32, 3266 (1985). 
8. W. H. Zurek, Physical Review Letters 53, 
391 (1984). 
9. P. Benioff, Journal of statistical physics 22, 
563 (1980). 
10. D. P. DiVincenzo, Science 270, 255 (1995). 
11. A. Barenco, et al., Physical review A 52, 
3457 (1995). 
12. P. W. Shor, Physical review A 52, R2493 
(1995). 
13. D. P. DiVincenzo, Physical Review A 51, 
1015 (1995). 
14. P. W. Shor, Proceedings 35th annual 
symposium on foundations of computer 
science (Ieee, 1994), pp. 124–134. 
15. J. I. Cirac, P. Zoller, Physical review letters 
74, 4091 (1995). 
16. D. Bouwmeester, et al., Nature 390, 575 
(1997). 



Current Natural Sciences & Engineering 1 (3), 2024 

184 
 

17. A. Furusawa, et al., science 282, 706 
(1998). 
18. S. Pirandola, J. Eisert, C. Weedbrook, A. 
Furusawa, S. L. Braunstein, Nature photonics 
9, 641 (2015). 
19. M. Guha Majumdar, Pramana 95, 200 
(2021). 
20. C. Wang, F.-G. Deng, Y.-S. Li, X.-S. Liu, 
G. L. Long, Physical Review A 71, 044305 
(2005). 
21. X. S. Liu, G. L. Long, D. M. Tong, F. Li, 
Physical Review A 65, 022304 (2002). 
22. A. Harrow, P. Hayden, D. Leung, Physical 
review letters 92, 187901 (2004). 
23. C. H. Bennett, et al., Physical Review 
Letters 87, 077902 (2001). 
24. B. Dakic´, et al., Nature Physics 8, 666 
(2012). 
25. C. H. Bennett, P. Hayden, D. W. Leung, P. 
W. Shor, A. Winter, IEEE Transactions on 
Information Theory 51, 56 (2005). 
26. Y. Xia, J. Song, H.-S. Song, Journal of 
Physics B: Atomic, Molecular and Optical 
Physics 40, 3719 (2007). 
27. T. Jullien, et al., Nature 514, 603 (2014). 
28. S. T. Flammia, D. Gross, Y.-K. Liu, J. 
Eisert, New Journal of Physics 14, 095022 
(2012). 
29. N. Gisin, G. Ribordy, W. Tittel, H. 
Zbinden, Reviews of modern physics 74, 145 
(2002). 
30. G. Brassard, N. Lu¨tkenhaus, T. Mor, B. C. 
Sanders, Physical review letters 85, 1330 
(2000). 
31. V. Scarani, et al., Reviews of modern 
physics 81, 1301 (2009). 
32. P. W. Shor, J. Preskill, Physical review 
letters 85, 441 (2000). 
33. D. Gottesman, H.-K. Lo, N. Lutkenhaus, J. 
Preskill, International Symposium on 
Information Theory, 2004. ISIT 2004. 
Proceedings. (IEEE, 2004), p. 136. 
34. A. Steane, Reports on Progress in Physics 
61, 117 (1998). 
35. J. L. O’brien, Science 318, 1567 (2007). 
36. J. Preskill, Quantum 2, 79 (2018). 
37. M. G. Majumdar, Journal of Quantum 
Information Science 8, 139 (2018). 
 

38. B. Yurke, J. S. Denker, Physical Review A 
29, 1419 (1984). 
39. M. Hayashi, K. Iwama, H. Nishimura, R. 
Raymond, S. Yamashita, STACS 2007: 24th 
Annual Symposium on Theoretical Aspects of 
Computer Science, Aachen, Germany, 
February 22-24, 2007. Proceedings 24 
(Springer, 2007), pp. 610–621. 
40. C. Simon, Nature Photonics 11, 678 
(2017). 
41. H. J. Kimble, Nature 453, 1023 (2008). 
42. S. Wehner, D. Elkouss, R. Hanson, Science 
362, eaam9288 (2018). 
43. M. G. Majumdar, S. S. Garani, Quantum 
Information Processing 20, 1 (2021). 
44. Y. Aharonov, L. Davidovich, N. Zagury, 
Physical Review A 48, 1687 (1993). 
45. J. Kempe, Contemporary Physics 44, 307 
(2003). 
46. B. C. Travaglione, G. J. Milburn, Physical 
Review A 65, 032310 (2002). 
47. N. Shenvi, J. Kempe, K. B. Whaley, 
Physical Review A 67, 052307 (2003). 
48. M. G. Majumdar, C. Chandrashekar, 
Journal of Physics B: Atomic, Molecular and 
Optical Physics 55, 045501 (2022). 
49. N. Lauk, et al., Quantum Science and 
Technology 5, 020501 (2020). 
50. M. T. Rakher, L. Ma, O. Slattery, X. Tang, 
K. Srinivasan, Nature Photonics 4, 786 (2010). 
51. M. Mirhosseini, A. Sipahigil, M. Kalaee, 
O. Painter, Nature 588, 599 (2020). 
52. M. Wu, E. Zeuthen, K. C. Balram, K. 
Srinivasan, Physical review applied 13, 
014027 (2020). 
53. R. W. Andrews, et al., Nature physics 10, 
321 (2014). 
54. T. Bagci, et al., Nature 507, 81 (2014). 
55. M. G. Majumdar, C. Chandrashekar, 
Physics Letters A p. 128829 (2023). 
56. J. Biamonte, et al., Nature 549, 195 (2017). 
57. V. Dunjko, H. J. Briegel, Reports on 
Progress in Physics 81, 074001 (2018). 
58. A. L. Samuel, IBM Journal of research and 
development 3, 210 (1959). 
59. R. Scharff, The how and why Wonder 
Book of Robots and Electronic Brains 
(Wonder, 2017). 



Current Natural Sciences & Engineering 1 (3), 2024 

185 
 

60. N. J. Nilsson, The mathematical 
foundations of learning machines (Morgan 
Kaufmann Publishers Inc., 1990). 
61. R. O. Duda, P. E. Hart, et al., Pattern 
classification and scene analysis, vol. 3 (Wiley 
New York, 1973). 
62. M. I. Jordan, T. M. Mitchell, Science 349, 
255 (2015). 
63. T. Menneer, A. Narayanan, Tech. Rep. 
R329 (1995). 
64. P. Rebentrost, M. Mohseni, S. Lloyd, 
Physical review letters 113, 130503 (2014). 
65. M. Schuld, I. Sinayskiy, F. Petruccione, 
Physical Review A 94, 022342 (2016). 
66. S. Lu, S. L. Braunstein, Quantum 
information processing 13, 757 (2014). 
67. S. Lloyd, M. Mohseni, P. Rebentrost, 
Nature Physics 10, 631 (2014). 
68. S. Lloyd, IEEE transactions on information 
theory 28, 129 (1982). 
69. S. Lloyd, M. Mohseni, P. Rebentrost, arXiv 
preprint arXiv:1307.0411 (2013). 
70. K. A. McKiernan, E. Davis, M. S. Alam, C. 
Rigetti, arXiv preprint arXiv:1908.08054 
(2019). 
71. R. Vasseur, S. Parameswaran, J. Moore, 
Physical Review B 91, 140202 (2015). 
72. R. W. Robinett, Physics reports 392, 1 
(2004). 
73. C. F. e Silva, A. E. Bernardini, Physical 
Review A 107, 042220 (2023). 
74. M. Berry, I. Marzoli, W. Schleich, Physics 
World 14, 39 (2001). 
75. G. M. Lando, R. O. Vallejos, G.-L. Ingold, 
A. M. O. de Almeida, Physical Review A 99, 
042125 (2019). 
76. S. Dumitru, E. I. Verriest, International 
Journal of Theoretical Physics 34, 1785 
(1995). 
77. V. V. Mazurenko, I. A. Iakovlev, O. M. 
Sotnikov, M. I. Katsnelson, Journal of the 
Physical Society of Japan 92, 081004 (2023). 
78. J. Kronja¨ger, C. Becker, P. Soltan-Panahi, 
K. Bongs, K. Sengstock, Physical review 
letters 105, 090402 (2010). 
79. J. Hertkorn, et al., Physical Review 
Research 3, 033125 (2021). 
80. P. Czoschke, H. Hong, L. Basile, T.-C. 
Chiang, Physical review letters 93, 036103 
(2004). 

81. A. Rowe, J. Nehls, R. Stradling, R. 
Ferguson, Physical Review B 63, 201307 
(2001). 
82. M. V Putz, Current Physical Chemistry 1, 
111 (2011). 
83. T. Szandała, Procedia Computer Science 
71, 68 (2015). 
84. R. Neigovzen, J. L. Neves, R. Sollacher, S. 
J. Glaser, Physical Review A 79, 042321 
(2009). 
85. D. M. J. Tax (2002). 
86. S. S. Khan, M. G. Madden, The 
Knowledge Engineering Review 29, 345 
(2014). 
87. S. S. Khan, M. G. Madden, Artificial 
Intelligence and Cognitive Science: 20th Irish 
Conference, AICS 2009, Dublin, Ireland, 
August 19-21, 2009, Revised Selected Papers 
20 (Springer, 2010), pp. 188–197. 
88. H. Hoffmann, Pattern recognition 40, 863 
(2007). 
89. B. Scho¨lkopf, R. C. Williamson, A. 
Smola, J. Shawe-Taylor, J. Platt, Advances in 
neural information processing systems 12 
(1999). 
90. J. C. Platt, J. Shawe-Taylor, A. J. Smola, R. 
C. Williamson, et al., Technical Report MSR-
T R-99–87, Microsoft Research (MSR) 
(1999). 
91. F. S. Gharehchopogh, Artificial 
Intelligence Review 56, 5479 (2023). 
92. L. Gao, L. Zhang, C. Liu, S. Wu, Artificial 
intelligence in medicine 108, 101935 (2020). 
93. B. Krawczyk, M. Woz´niak, F. Herrera, 
2014 IEEE Symposium on Computational 
Intelligence and Data Mining (CIDM) (IEEE, 
2014), pp. 337–344. 
94. X. Du, Journal of Process Control 83, 
1 (2019). 
95. J. Lee, Y. C. Lee, J. T. Kim, Journal of 
Manufacturing Systems 57, 357 (2020). 
96. M. A. Md Ali, N. Badrud’din, H. Abdullah, 
F. Kemi, International Journal of Modern 
Physics A 35, 2050131 (2020). 
97. E. J. Spinosa, A. C. de Carvalho, Advances 
in Bioinformatics and Computational Biology: 
Brazilian Symposium on Bioinformatics, BSB 
2005, Sao Leopoldo, Brazil, July 27-29, 2005. 
Proceedings (Springer, 2005), pp. 54–64. 



Current Natural Sciences & Engineering 1 (3), 2024 

186 
 

98. M. Yousef, M. D. Sac¸ar Demirci, W. 
Khalifa, J. Allmer, Advances in bioinformatics 
2016 (2016). 
99. G. Park, J. Huh, D. K. Park, Machine 
Learning: Science and Technology (2022). 
100. J. Romero, J. P. Olson, A. Aspuru-Guzik, 
Quantum Science and Technology 2, 045001 
(2017). 
101. A. Pepper, N. Tischler, G. J. Pryde, 
Physical review letters 122, 060501 (2019). 
102. C.-J. Huang, et al., Physical Review A 
102, 032412 (2020). 
103. D. F. Locher, L. Cardarelli, M. Mu¨ller, 
Quantum 7, 942 (2023). 
104. D. Bondarenko, P. Feldmann, Physical 
review letters 124, 130502 (2020). 
105. F. Zhou, et al., Applied Physics Letters 
121, 134001 (2022). 
106. C. Harney, S. Pirandola, PRX Quantum 3, 
010311 (2022). 
107. F. Leymann, Quantum Technology and 
Optimization Problems: First International 
Work- shop, QTOP 2019, Munich, Germany, 
March 18, 2019, Proceedings 1 (Springer, 
2019), pp. 218–230. 
108. S. Perdrix, Electronic Notes in 
Theoretical Computer Science 170, 125 
(2007). 
109. I. Luchnikov, S. Vintskevich, D. 
Grigoriev, S. Filippov, Physical review letters 
124, 140502 (2020). 
110. X.-G. Wen, Science 363, eaal3099 (2019). 
111. A. Montanaro, npj Quantum Information 
2, 1 (2016). 
112. R. Cleve, A. Ekert, C. Macchiavello, M. 
Mosca, Proceedings of the Royal Society of 
London. Series A: Mathematical, Physical and 
Engineering Sciences 454, 339 (1998). 
113. B. M. Terhal, Nature Physics 14, 530 
(2018). 
114. P. W. Shor, SIAM review 41, 303 (1999). 
115. S. P. Jordan, D. Gosset, P. J. Love, 
Physical Review A 81, 032331 (2010). 
116. Y.-K. Liu, M. Christandl, F. Verstraete, 
Physical review letters 98, 110503 (2007). 
117. T. F. Rønnow, et al., science 345, 420 
(2014). 
118. V. Vedral, Foundations of Physics 40, 
1141 (2010). 

119. E. Crosson, D. Lidar, Nature Reviews 
Physics 3, 466 (2021). 
120. R. B. Patel, T. Rudolph, G. J. Pryde, 
Science advances 5, eaau6668 (2019). 
121. A. W. Harrow, A. Hassidim, S. Lloyd, 
Physical review letters 103, 150502 (2009). 
122. B. D. Clader, B. C. Jacobs, C. R. Sprouse, 
Physical review letters 110, 250504 (2013). 
123. M. Schuld, F. Petruccione, Supervised 
learning with quantum computers, vol. 17 
(Springer, 2018). 
124. M. A. Hearst, S. T. Dumais, E. Osuna, J. 
Platt, B. Scholkopf, IEEE Intelligent Systems 
and their applications 13, 18 (1998). 
125. F. Samuelson, D. G. Brown, The 2011 
International Joint Conference on Neural 
Networks (IEEE, 2011), pp. 1020–1026. 
126. K. L. Pudenz, D. A. Lidar, Quantum 
information processing 12, 2027 (2013). 
127. D. Anguita, S. Ridella, F. Rivieccio, R. 
Zunino, Neural Networks 16, 763 (2003). 
128. R. Zhang, J. Wang, N. Jiang, H. Li, Z. 
Wang, Neural Networks 151, 376 (2022). 
129. R. Zhang, J. Wang, N. Jiang, Z. Wang, 
Information Sciences 635, 25 (2023). 
130. H. Li, N. Jiang, R. Zhang, Z. Wang, H. 
Wang, International Journal of Theoretical 
Physics 61, 92 (2022). 
131. D. Willsch, M. Willsch, H. De Raedt, K. 
Michielsen, Computer physics 
communications 248, 107006 (2020). 
132. M. Ezawa, Scientific Reports 12, 6758 
(2022). 
133. P. Cunningham, S. J. Delany, ACM 
computing surveys (CSUR) 54, 1 (2021). 
134. M. Schuld, I. Sinayskiy, F. Petruccione, 
Contemporary Physics 56, 172 (2015). 
135. D. Dong, C. Chen, H. Li, T.-J. Tarn, IEEE 
Transactions on Systems, Man, and Cybernet- 
ics, Part B (Cybernetics) 38, 1207 (2008). 
136. V. Dunjko, J. M. Taylor, H. J. Briegel, 
2017 IEEE International Conference on 
Systems, Man, and Cybernetics (SMC) (IEEE, 
2017), pp. 282–287. 
137. V. Dunjko, Y.-K. Liu, X. Wu, J. M. 
Taylor, arXiv preprint arXiv:1710.11160 
(2017). 
138. C. J. Watkins, P. Dayan, Machine 
learning 8, 279 (1992). 
 



Current Natural Sciences & Engineering 1 (3), 2024 

187 
 

139. A. Skolik, S. Jerbi, V. Dunjko, Quantum 
6, 720 (2022).  
140. S. M. Kakade, Advances in neural 
information processing systems 14 (2001). 
141. J. Yao, M. Bukov, L. Lin, Mathematical 
and Scientific Machine Learning (PMLR, 
2020), pp. 605–634. 
142. L. J. Fiderer, J. Schuff, D. Braun, Prx 
Quantum 2, 020303 (2021). 
143. Y. LeCun, Y. Bengio, G. Hinton, nature 
521, 436 (2015). 
144. I. Goodfellow, Y. Bengio, A. Courville, 
Deep learning (MIT press, 2016) 
145. S. I. Gallant, et al., IEEE Transactions on 
neural networks 1, 179 (1990). 
146. B. Ricks, D. Ventura, Advances in neural 
information processing systems 16 (2003). 
147. Z. Zhao, A. Pozas-Kerstjens, P. 
Rebentrost, P. Wittek, Quantum Machine 
Intelligence 1, 41 (2019). 
148. I. Cong, S. Choi, M. D. Lukin, Nature 
Physics 15, 1273 (2019). 
149. I. Kerenidis, J. Landman, A. Prakash, 
International Conference on Learning 
Representa- tions. 
150. M. Henderson, S. Shakya, S. Pradhan, T. 
Cook, Quantum Machine Intelligence 2, 2 
(2020). 
151. P. Gohel, A. Chakraborty, K. R. JV, 2022 
IEEE International Conference on Quantum 
Computing and Engineering (QCE) (IEEE, 
2022), pp. 831–832. 
152. J. Barr, Synchronic or Diachronic? (Brill, 
1995), pp. 1–14. 
153. T. Cho, Language and Linguistics 
Compass 10, 120 (2016). 
154. S. Yolchuyeva, G. Ne´meth, B. Gyires-
To´th, arXiv preprint arXiv:2004.06338 
(2020). 
155. S. C. Kak, International Journal of 
Approximate Reasoning 1, 117 (1987). 
156. V. Raskin, Machine translation: 
Theoretical and methodological issues pp. 42–
58 (1987). 
157. W. Zeng, B. Coecke, arXiv preprint 
arXiv:1608.01406 (2016). 
158. N. Wiebe, A. Kapoor, K. M. Svore, 
Quantum information and computation 15, 
318 (2015). 

159. S. Clark, B. Coecke, M. Sadrzadeh, 
Proceedings of the Second Quantum 
Interaction Sym- posium (QI-2008) (Citeseer, 
2008), pp. 133–140. 
160. R. Guarasci, G. De Pietro, M. Esposito, 
Applied Sciences 12, 5651 (2022). 
161. R. Lorenz, A. Pearson, K. Meichanetzidis, 
D. Kartsaklis, B. Coecke, Journal of Artificial 
Intelligence Research 76, 1305 (2023). 
162. Y. Liu, S. Arunachalam, K. Temme, 
Nature Physics 17, 1013 (2021).  
163. J. Liu, et al., Machine Learning: Science 
and Technology 4, 025003 (2023). 
164. J. J. Meyer, et al., PRX Quantum 4, 
010328 (2023). 
165. E. Abedi, S. Beigi, L. Taghavi, Quantum 
7, 989 (2023). 
166. S. Arunachalam, R. De Wolf, The Journal 
of Machine Learning Research 19, 2879 
(2018). 
167. L. Banchi, J. Pereira, S. Pirandola, PRX 
Quantum 2, 040321 (2021). 
168. Z. Krunic, F. F. Flo¨ther, G. Seegan, N. D. 
Earnest-Noble, O. Shehab, IEEE Transactions 
on Quantum Engineering 3, 1 (2022). 
169. S. F. Ahmad, R. Rawat, M. Moharir, 2021 
International Conference on Computational 
Intelligence and Knowledge Economy 
(ICCIKE) (IEEE, 2021), pp. 345–349. 
170. J. R. McClean, S. Boixo, V. N. 
Smelyanskiy, R. Babbush, H. Neven, Nature 
communications 9, 4812 (2018). 
171. X. Ge, R. Wu, H. Rabitz, Complex 
System Modeling and Simulation 1, 77 (2021). 
172. A. Pe´rez-Salinas, A. Cervera-Lierta, E. 
Gil-Fuster, J. I. Latorre, Quantum 4, 226 
(2020). 
173. V. Havl´ıcˇek, et al., Nature 567, 209 
(2019). 
174. W. M. Watkins, S. Y.-C. Chen, S. Yoo, 
Scientific Reports 13, 2453 (2023). 
175. H. Liao, I. Convy, Z. Yang, K. B. Whaley, 
Quantum Machine Intelligence 5, 7 (2023). 


