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Abstract 

Several thousands of articles have been published globally to apportion sources of atmospheric 
aerosols using various statistical tools and marker elements present in the aerosols in the urban 
cities of the world in designing mitigation strategies to improve the air quality. In this study, the 
effectiveness of various statistical methods used in source identifications and quantifications of 
atmospheric aerosols are discussed. This paper also discussed the importance of source 
identifications of aerosols chemistry using various receptor models. We have applied IMPROVE 
(Interagency Monitoring of Protected Visual Environments), PCA (principal component analysis) 
and PMF (positive matrix factorization) models on chemical species of PM2.5 collected at an urban 
site of Delhi, India, over the period January to December 2021 and explored the better and accurate 
source analysis of the PM2.5. A comparative analysis of these models was conducted to assess their 
performance in resolving source contributions. The results highlight the strengths and limitations 
of each method and offer insights into their applicability for accurate source apportionment in 
complex urban environments. 
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1. Introduction 

The quantification of the plausible sources to 
the atmospheric aerosols /particulate matter 
(PM) is a critical step toward designing 
effective mitigation and improving urban air 
quality, especially in regions with severe 
pollution burdens like India [1]. Hence, 
accurate source apportionment enables 
policymakers, researchers, and urban 
planners to identify the major contributors to 
PM levels and implement targeted 
interventions. To achieve reliable source 
identification, the development and 
application of advanced statistical techniques 
have become increasingly important [2-4]. 
Source apportionment of aerosols is essential 
tool for identifications of specific aerosol 
concentrations to the adverse health effects 
[5;6]. There are several statistical methods 
[enrichment factors (EFs), principal 
component analysis (PCA), IMPROVE 
protocol, chemical mass balance (CMB), 
UNMIX and positive matrix factorization 
(PMF) etc.] are being used for source 
apportionment of pollutants around the globe 
[3;7;8], some of them are obsolete (EFs, 
PCA, and IMPROVE etc.) and some of them 
are relevant (UNMIX, CMB and PMF). For 
instance, EFs—first applied in the 1960s—
offer a basic understanding of the elemental 
origin (natural or anthropogenic) based on 
crustal abundance but fail to account for 
regional variations in elemental 
concentrations [9]. It provides the simple 
crude information that the element is higher 
than the typical earth’s crustal values does 
not account for local variations in elemental 
abundance [4]. Similarly, PCA, which 
operates on the eigenvector method, is 
recognized as a preliminary screening tool 
rather than a full receptor model due to its 
inability to quantify source contributions 
accurately [4;10]. Hopke and Jaffe (2020) has 
suggested that these tools (EFs and PCA) 
may not be used as a receptor model for 
source apportionment of atmospheric 

aerosols because more quantitative data 
analytical tools had been developed and 
available [7].  

Factor analysis tools like non-
negative constrained alternating least square 
[8], positive matrix factorization [7] and non-
negative least squares that allow proper 
weighting of individual data points for 
optimization process [4]. From last two 
decades, two major classes of the statistical 
tools that have been used worldwide as 
receptor models are:  i) chemical mass 
balance (CMB) and ii) multivariate factor 
analysis models (PCA-APCS, UNMIX, and 
PMF) [11]. Even though with the same data 
sets and same chemical species of 
atmospheric aerosols (e.g. PM1, PM2.5, PM10 
etc.) these receptor models resolve the 
different sources with different apportionate 
due to different statistical algorithms and 
constraints. Hence, applying these models 
concurrently to the same dataset allows for a 
comparative evaluation of their outputs, 
facilitating a more precise identification of 
the dominant pollution sources. In the present 
manuscript we report the application of 
various tools used in the source 
apportionment (SA) analysis using PM2.5 
chemical species collected in Delhi from 
January 2021-December, 2021. We explore 
the relative strengths and limitations of these 
models and provide insight into their 
performance and applicability in an urban 
Indian context. Our findings aim to support 
more informed choices in source 
apportionment methodology and contribute 
to the formulation of evidence-based air 
quality management strategies. 

2. Materials and Methods 

 PM2.5 samples (n = 59) were collected at the 
experimental site of CSIR-NPL, New Delhi, 
over the period from January to December 
2021, using a fine particle sampler in 
accordance with standard recommended 
procedures [12]. Due to the COVID-19 
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lockdown, sampling was not possible from 
May 2021 to July 2021, resulting in a data 
gap during this period of the study. The 
sampling location situated in Central Delhi 
(28°38’N, 77°10’E) and represents an urban 
background and surrounded by heavy 
roadside traffic [13]. Delhi, home to a 
population exceeding 33.8 million [14] and is 
ranked among the most polluted cities 
globally. PM2.5 samples were analyzed for 
their carbonaceous components (OC and 
EC), water soluble inorganic ions (WSIIs: 
Na+, Ca2+, Mg2+, K+, NH4+, Cl-, F-, NO3

- and 
SO4

2-) and elements (Si, Ti, al, Fe, Zn, Cu, 
Mn, Pb, As, Br, Cr, Mo and P) using different 
standard instrumentations and analytical 
techniques [3;12]. Organic carbon (OC) and 
elemental (EC) concentrations of PM2.5 
samples were determined using an OC/EC 
carbon analyser (DRI 2001A, Atmoslytic 
Inc., Calabasas, CA). WSIS were analyzed 
using Metrohm 930 Compact Ion 
Chromatography (IC). Concentrations of 
various elements of PM2.5 were analyzed 
using Wavelength Dispersive X-Ray 
Fluorescence (WD-XRF; ZSX Primus, 
Rigaku, Japan) [ 12]. Field sample blank 
filters were analyzed using the same 
procedure as exposed filters, and their 
average concentrations were subtracted to 
determine final sample values. Each sample 
was analyzed in triplicate to assess analytical 
repeatability. 

The analyzed chemical species (OC, 
EC, WSIS and elements) are used as input for 
IMPROVE, PCA and PMF models. The 
details of model description and outcome 
procedures are available in our previous 
publications [12;15]. The IMPROVE 
(Interagency Monitoring of Protected Visual 
Environments) model is a receptor-based 
method used to apportion sources of 
particulate matter (PM2.5) through mass 
reconstruction. It estimates source 
contributions by analysing concentrations of 
specific chemical species, categorizing PM 

into components like organic matter, 
elemental carbon, soil dust, sea salt, 
ammonium sulphate, ammonium nitrate, and 
trace elements. Each component is calculated 
using marker species and conversion factors. 
The reconstructed mass is compared to 
gravimetric mass to evaluate accuracy, 
providing a simplified yet effective approach 
for air quality management [15]. PCA-APCS 
and PMF 5.0 models were used to identify 
and apportion sources of PM2.5 across the 
study period. PCA-APCS was applied using 
SPSS, where variables were standardized, 
and only principal components with 
eigenvalues greater than 1 were considered, 
following Kaiser’s criteria. A KMO value 
greater than 0.6 confirmed the data's 
suitability for factor analysis, and Varimax 
rotation was used. Variables with factor 
loadings > 0.5 were used to identify sources 
[12;15]. 

Annual variations in sources were further 
examined using the EPA PMF 5.0 model. A 
seven-factor solution was found suitable for 
the available data. Model validation showed 
strong agreement between modelled and 
measured data (R2 > 0.6), indicating good 
performance with Qtrue/Qexpected <1.5. 
Additional uncertainties were accounted for 
using DISP and bootstrap (BS) analyses. The 
BS (100 runs) showed no unmapped cases, 
and DISP analysis indicated zero factor 
profile swaps, confirming model reliability 
[12;15]. 

3. Results and Discussion 

The mean statistics of chemical species (OC, 
EC, WSIS and elements) of PM2.5 extracted 
during January-December 2021 was depicted 
in Table 1 with standard deviation (± SD at σ 
= 1). The mean concentration PM2.5 was 110 
± 54 µg m-3 during the sampling period.  
Throughout the study period, the highest 
average concentration of PM2.5 was observed 
during the post-monsoon season (153 ± 113 
µg m-3), followed by winter (135 ± 49 µg m-
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3), summer (56 ± 16 µg m-3), and the lowest 
in the monsoon season (40±15 µg m-3). 
Similarly, the carbonaceous component i.e., 
OC and EC were found highest during winter 
(21 ± 10 µg m-3 and 9 ± 4 µg m-3) 
respectively, followed by post-monsoon (20 
± 16 µg m-3 and 7 ± 5 µg m-3), summer (8 ± 
3 µg m-3 and 3 ± 2 µg m-3), then in monsoon 
(5 ± 0.7 µg m-3 and 2 ± 0.4 µg m-3). In the 
present study the total carbonaceous 
components (TC = OC+EC) were accounted 
for 18.6% of PM2.5, whereas the total WSIS 
(NH4

+, SO4
2-, NO3

-, F-, Cl-, Na+, Mg2+, K+ 
and Ca2+) was accounted for 36% of PM2.5 
(39.7 µg m-3). The total mass concentrations 
of elements extracted as 5.26 µg m-3 which 
was accounted for 5% of PM2.5. These 
chemical species (OC, EC, WSIS and 
elements) are used as input for the various 
receptor models (IMPROVE, PCA and PMF) 
to evaluate their capability.  

 

Table 1. Mean concentration of PM2.5 and their 
chemical species (µg m-3) in Delhi.   

Chemical Species 
Concentration 
(µg m-3) 

PM2.5 110 ± 54 

Organic carbon 
(OC) 

14.7 ± 11.6 

Elemental Carbon 
(EC) 

5.8 ± 4.2 

Ammonium (NH4
+) 7.3 ± 6.1 

Sulphate (SO4
2-) 9.7 ± 5.9 

Nitrate (NO3
-) 7.2 ± 5.3 

Fluoride (F-) 0.5 ± 0.4 

Chloride (Cl-) 6.3 ± 3.9 

Sodium (Na+) 2.9 ± 1.5 

Magnesium (Mg2+) 0.3 ± 0.2 

Potassium (K+) 2.7 ± 1.8 

Calcium (Ca2+) 2.8 ± 1.5 

Aluminum (Al) 0.39 ± 0.36 

Phosphorous (P) 0.08 ± 0.07 

Sulphur (S) 2.01 ± 1.41 

Chromium (Cr) 0.31 ± 0.17 

Iron (Fe) 0.85 ± 0.61 

Zinc (Zn) 0.49 ± 0.42 

Copper (Cu) 0.21 ± 0.17 

Molybdenum (Mo) 0.21 ± 0.19 

Bromine (Br) 0.12 ± 0.11 

Lead (Pb) 0.39 ± 0.28 

Arsenic (As) 0.11 ± 0.09 

Titanium (Ti) 0.09 ± 0.07 

 

3.1. IMPROVE model 

In order to obtain the probable empirical 
sources of PM2.5, the chemical species of 
PM2.5 were re-constructed (RCPM2.5) using 
IMPROVE equation [16;17]. RCPM2.5 was 
computed using Equation 1: 

𝑹𝑪𝑷𝑴𝟐.𝟓 = [𝑨𝑺] + [𝑨𝑵] + [𝑷𝑶𝑴] + [𝑳𝑨𝑪] +
[𝑺𝑺] + [𝑺𝒐𝒊𝒍]                      (1)                 

Where, AS = ammonium sulphate,  

AN = ammonium nitrate,  

POM = particulate organic matter,  

LAC = light absorbing carbon,  

SS = sea salt.  

The details of multipliers, procedures and 
explanation are available in literatures 
[12;16;18]. The mass difference (PM2.5 – 
RCPM2.5) or unidentified mass (UM) of 
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PM2.5 was calculated by subtracting RCPM2.5 
from measured PM2.5. 

Figure 1: Re-construct mass of PM2.5 extracted by 
IMPROVE model 

The percentage extracted source of PM2.5 by 
IMPROVE model depicted in Figure 1. The 
AS (14.4 µg m-3), AN (9.3 µg m-3), POM 
(23.5 µg m-3), LAC (5.8 µg m-3), SS (16.0 µg 
m-3), Soil (19.5 µg m-3) and UM (20.3 µg m-

3) contributed to PM2.5 as 12.2%, 8.5%, 
21.4%, 5.3%, 14.5%, 17.7% and 20.4%, 
respectively. The unidentified mass (UM) of  

 

 

 

 

 

 

 

 

 

PM2.5, estimated by reconstructing the PM2.5 
mass, accounted for 20.4%. This could be due 
to the presence of carbonate-rich minerals, 
calcium sulfate, alumino-silicates, and other 
similar components in the samples [19;20].  
In the urban site of Delhi, the majorly, AS is 
produced in the ambient air through the 

chemical reactions of SO2, which emits from 
combustion of fossil fuels (coal and diesel) 
whereas AN is produced through reversible 
reactions of gas-phase NH3 and HNO3, aided 
by the formation of oxidized nitrogen through 
combustion of fossil fuels and vehicular 
emissions [3;20]. The abundance of POM in 
the atmosphere are mostly coming from 
primary (combustion) and secondary 
(secondary organic aerosols formation) 
processes [21]. 

3.2. PCA and PMF model 

 Figure 2 shows the percentage contribution 
of sources to PM2.5 resolved by PCA, and 
PMF models in Delhi, India during 2021. 
PCA extracted 6 sources of PM2.5 in Delhi, 
i.e. secondary aerosols (SA), vehicular 
emissions (VE), biomass burning + fossil fuel 
combustion (BB+FFC), soil dust (SD), sea 
salt (SS) and industrial emission. The highest 
contribution of SD was resolved to be 32% 
with prominent availability tracer elements 
Al, Ca, Fe, and Ti whereas lowest as SS (4%). 

 

 

 

 

 

 

 

 

 

PMF model resolved as 7 sources of PM2.5 in 
Delhi, i.e. SA (23%), VE (17%), BB (14%), 
SD (24%), FFC (11%), SS (5%) and IE (6%). 
PMF contributed highest loading of SD (24 
%) and lowest of SS (4%) to the PM2.5 mass 
concentrations. Jain et al. (2020) also 
examined the similar source type (common 

[a] [b] 

Figure 2 Source contribution (%) to PM2.5 resolved by a) PCA and b) PMF models in Delhi. 
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sources: SA, VE, BB, and SD) at megacity 
Delhi with different percent contribution to 
PM2.5 using receptor models. 

In India, identifying the sources of 
particulate matter (PM) pollution involves 
analysing specific elemental signatures. Soil 
dust is typically traced using elements like 
Al, Si, Ca, Ti, Fe, along with trace metals 
such as Pb, Cu, Cr, Ni, Co, and Mn [12; 22; 
23; 24]. Biomass burning is a major 
contributor to air pollution, especially in the 
post-monsoon season. Water-soluble K is a 
widely recognized marker for this source 
[25]. In India, K+ has proven to be 
particularly effective in identifying emissions 
from crop residue and wood burning [20]. 
The health effects are severe—long-term 
exposure can lead to respiratory diseases, 
headaches, dizziness, and in extreme cases, 
premature death. Fossil fuel combustion, 
particularly from coal, is another critical 
source. Elements like As and Cl are 
commonly released during coal burning and 
serve as key indicators of this process [26; 
27]. Prolonged exposure to these emissions 
raises the risk of respiratory and 
cardiovascular diseases and contributes 
significantly to environmental damage and 
global warming. In urban areas, vehicular 
emissions add to the problem. Exhaust 
releases pollutants like NOx, CO, SO2, VOCs, 
and particulate matter containing metals such 
as Pb, Zn, and Cu [28; 29]. Beyond exhaust, 
non-exhaust sources like brake wear, tire 
degradation, and road dust also release 
harmful particles. Zn, Pb, and Mo are 
typically associated with these non-exhaust 
emissions [26; 30; 31]. Industrial activities, 
especially in Delhi, contribute further by 
releasing hazardous metals like V, Cd, and 
Pb, often from burning refuse oil and 
improper battery disposal [32]. Other metals 
such as Zn, Mn, Co, Cu, and Cr have been 
linked to emissions from metal-based 
industries [3]. Key particulate pollutants also 
include black carbon (BC) and organic 

carbon (OC). BC absorbs sunlight and 
contributes to atmospheric warming, while 
OC scatters light, impacting visibility and 
climate. These are often accompanied by CO, 
NOx, SO2, and greenhouse gases like CO2 
and CH4 [33], highlighting the complex mix 
of pollutants affecting both human health and 
the environment. SO4

2-, NO3
-, and NH4

+ are 
key indicators of secondary aerosol 
formation processes [34], while Na+, K+, and 
Mg2+ serve as primary tracers for sea salt 
contributions [23]. 

Recent global assessments, including 
the comprehensive review by Hopke et al. 
(2020), have identified several dominant 
sources contributing to ambient particulate 
matter (PM) concentrations in India. These 
sources include secondary inorganic 
aerosols, sea salt, vehicular emissions, 
industrial activities, biomass burning, coal 
and oil combustion, as well as secondary 
organic aerosols. Understanding the origin 
and characteristics of PM, particularly PM2.5 
and PM10 is crucial for atmospheric 
scientists, public health researchers, 
policymakers, and other stakeholders 
involved in air quality management. Source 
apportionment studies play a vital role in 
elucidating the contribution of local and 
regional emission sources to ambient PM 
levels. These studies help characterize the 
physical and chemical properties of aerosols, 
offering valuable insight into source-specific 
influences on air quality. The information 
derived from such analyses is instrumental in 
formulating targeted mitigation strategies 
aimed at reducing pollutant levels and 
improving overall air quality, both regionally 
and globally. Moreover, quantifying source-
specific PM concentrations is increasingly 
important in epidemiological research, as it 
enables the identification of pollutant sources 
most strongly associated with adverse health 
outcomes. This targeted approach supports 
the development of more effective public 
health interventions and regulatory policies. 
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We evaluated the performance of different 
receptor models in identifying and 
quantifying sources of PM2.5 and found that 
while all models detected similar source 
types, the number of sources and their 
contributions varied at sampling site. Among 
the models, PMF demonstrated several 
advantages over PCA. Unlike PCA, which 
may yield negative values in source profiles 
and have limited efficiency in source 
identification, PMF ensures non-negative 
solutions and provides more meaningful 
results. Although PMF requires a relatively 
large dataset, it is robust against data gaps and 
low concentrations below detection limits by 
incorporating experimental uncertainties and 
assigning weights based on measurement 
confidence. This enhances the reliability of 
PMF outputs, allowing it to resolve sources 
more accurately by effectively linking 
marker species to their respective sources. In 
contrast, PCA use only concentration data 
without uncertainty weighting and apply 
relatively coarse methods for handling 
outliers and missing data, often leading to the 
mixing of distinct source signals and less 
precise source apportionment. Given these 
strengths, PMF offers more accurate and 
interpretable estimates of source 
contributions, as supported by comparisons 
in our earlier studies [12; 35]. 

4. Conclusions 

In this study, we demonstrated the 
applications of various simple to complex 
tools of receptor (IMPROVE, PCA and PMF) 
models on same chemical species of PM2.5 to 
access source contribution to PM2.5. The 
IMPROVE model computed the various 
sources PM2.5 with a simple established 
multiplying factors whereas PCA extracted 
the sources through dimensionality reduction 
method. PMF functions on the principle of 
decomposing a data matrix into two smaller 
matrices, one representing source profiles 
and the other representing source 

contributions. In the present case, both PCA 
and PMF revealed comparable source 
categories, though with varying contribution 
estimates, while the IMPROVE approach 
provided fixed source types based on 
standard classifications. This comparative 
analysis highlights the utility and limitations 
of different receptor models in identifying 
and quantifying PM2.5 sources. 
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