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Abstract: We consider a fully directed self-avoiding walk model on a cubic lattice to mimic the 

conformations of an infinitely long flexible polymer chain and also to mimic confirmations of a 

short flexible chain under confined conditions. The confinement conditions is achieved using two 

parallel impenetrable plates. The confined chain is under good solvent conditions and we revisit 

this problem to solve the real (self avoiding) polymer's model for any length of the chain and also 

for any given separation in between the confining plates. The equilibrium statistics of the confined 

polymer chain are derived using analytical approach of the generating function technique. The 

force of the confinement, the surface tension and the monomer density profile of the confined 

chain are obtained analytically. We propose that the methods of calculation are suitable to 

understand thermodynamics of an arbitrary length confined polymer chain under other possible 

conditions of the confinement. 
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1. Introduction: A lattice model of a self-

avoiding walk (SAW) has been widely used for 

the past a few decades to understand the 

conformational statistics of a confined short 

polymer chain under various geometries, and 

the lattice models were also used to understand 

the equilibrium statistics of a polymer chain in 

the bulk [1-3]. Therefore, there are a variety of 

interesting results on thermo-dynamical aspect 

of a short and an infinitely long flexible 

polymer chain in the bulk, and also for a short 

and an infinitely long polymer chain under 

various geometries [4-7]. Such studies 

revealed a wealth of information regarding 

scaling behavior/universal properties and 

phase transitions in the polymer 

macromolecules. These reports gave us 

understanding of the steric stabilization of the 

polymer dispersions, colloidal solutions, thin 

films, and such studies were relevant for 

surface coatings and sensors [3,5,7-9]. 

Though, there are a couple of facts that are not 

well understood regarding an infinitely long as 

well as a short polymer chain for their three-

dimensional confined geometries, e. g., 

variations of thermo-dynamical properties 

(force of the confinement, entropic surface 

tension, monomer density profile, etc.) of a 

confined self-avoiding flexible polymer chain; 

and hence it requires an investigation to 

understood a few such aspects which we shall 

discuss for three-dimensional confinements 

here. 

We have chosen a directed walk model [3] for 

a self-avoiding polymer chain to understand 

the thermo-dynamical properties of an 

infinitely long flexible chain. Also, we report 

results for a short flexible polymer chain to 

understand the thermodynamics of the chain 

under the proposed confined geometry. The 

confinement condition is achieved around the 

polymer chain using a pair of impenetrable flat 

plates (as shown in figure 1); the plate’s 
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separation is measured in a unit of a monomer 

length. Thus, the separation of the confining 

plates is varied from one monomer length to 

the size of the polymer chain. 

2. Model and method: We use theory of 

critical phenomenon to understand the Physics 

of a single polymer chain merely because a 

linear polymer chain is a critical object [3,5,7]. 

Therefore, there are several reports on the 

thermodynamics of a single polymer chain. 

These reports on the statistics of the single 

polymer chain and chain's statistics so obtained 

correspond to a condition that the chain is 

under very dilute solution [1,3,7,10-13]. We 

confine our discussion to the model of a fully 

directed walk of a confined flexible polymer 

chain.  

 

 
 

Figure 1: An N monomers long confined flexible 

polymer chain is shown in figure 1. A pair of 

impenetrable parallel plates confine the self-

avoiding/real polymer chain. The lower plate is 

located at x = 0, and the upper plate is located at x = 

L; one end of the polymer chain is grafted at a point 

O on the lower plate, i.e., on the plate located at x = 

0. 

 

It is also to be highlighted that there are several 

reports on the adsorption-desorption phase 

transitions of a confined chain and there are 

reports on conformational statistics of a 

confined polymer chain under various 

geometries; the author tried his best to refer to 

some of the results for the sake of literature 

survey on the issue of confined polymer chain 

under specific geometries.  

2.1 Fully Directed Self Avoiding Walk 

(FDSAW) Model: A lattice model of the fully 

directed self-avoiding walk [3] is widely used 

to understand the thermodynamics of an 

infinitely long polymer chain under various 

geometries. Since a directed walk model is 

solvable analytically; therefore, we have exact 

results on single-chain statistics using a 

directed walk model. It is well known that the 

qualitative nature of the phase diagram for a 

directed walk model is the same as to that of its 

isotropic version [10]. It is assumed that the 

first impenetrable plate is placed at x = 0 and 

another impenetrable parallel plate is placed at 

x = L, where the value of L = 1, 2, 3, ...., ∞; and 

the parameter L is measured in the unit of a 

monomer length; and the confined real/self-

avoiding polymer chain is schematically 

shown in figure 1. A condition of L≥N 

corresponds to a polymer chain in the bulk. 

In the case of a fully directed walk model in 

three dimensions, it is known also that the 

walker is allowed to take steps only along +x, 

+y, and +z directions in between two parallel 

plates, and along +x direction walker can take 

the maximum L (≤N) steps while the walker can 

take any number of steps (N) along remaining 

other two directions, i.e., along +y and +z 

directions.  We have conformations (CN
L) of an 

N monomers long polymer chain in between 

two parallel plates, where one end of the chain 

is grafted at the corner (O) of the lower plate (x 

= 0). Thus, we have a condition of the 

confinement provided L<N. A general 

expression of the grand canonical partition 

function for an infinitely long confined self-

avoiding flexible chain is written as: 

𝐺(𝑔, 𝑧) = ∑ ∑ 𝑔𝑃𝑧𝑁−𝑃 𝐴𝑙𝑙 𝑤𝑎𝑙𝑘𝑠 𝑜𝑓 𝑁 𝑚𝑜𝑛𝑜𝑚𝑒𝑟𝑠
∞
𝑁=1                                                                           

(1) 

A symbol g refers to the step fugacity of the 

walker along a direction parallel to the plane of 

the confining plates. At the same time, z is the 

step fugacity perpendicular to the plane of the 

confining plates. There are P monomers of the 

chain lying in the plane of the parallel plates, 

and  remaining (N-P) monomers are located 

perpendicular to the plane of the plates for an N 
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monomers long confined polymer chain. 

 

3. Results:  A lattice model is often used to 

obtain an equilibrium statistics of an infinitely 

long confined flexible polymer chain and a 

short-confined polymer chain [3,5,7]. We 

obtained the exact results on the 

conformational statistics of a flexible self-

avoiding polymer chain for its confinement 

using two parallel impenetrable plates; the 

analytical calculations are given below for a 

short-confined chain and an infinitely long 

confined flexible polymer chain, separately. 

 

3A. The equilibrium statistics of a confined 

Self Avoiding flexible polymer chain using 

Grand Canonical Ensemble (GCE) 

approach: An exact expression of the grand 

canonical partition function for an infinitely 

long confined flexible polymer chain is 

obtained for different possible values of the 

plate separation (L); and also, for the bulk 

case, the partition function of the chain may be 

written as (N≥1 and L<N), 

 

𝐺(𝑔, 𝑧) = ∑ [(2𝑔)𝑃 +𝑁→∞
𝑃=1

∑ 𝑧𝐾{
∏ (𝑃−𝑄+1)𝐾

𝑄=1

𝐾!
(2𝑔)𝑃−𝐾}]

𝐿(≤𝑃)→∞
𝐾(≤𝑃)=1                                      

(2) 

We were able to recover an expression for the 

grand canonical partition function of the chain 

for the bulk case [10] by substituting z = g 

(when L≥N and N→∞) in equation 2. The first 

term on the right-hand side of equation 2 

corresponds to the conformations of the chain 

lying on the lower plate (i.e., at x = 0). A 

simple form of the expression for the grand 

canonical partition function for the bulk case 

(i.e., for an infinite separation between the 

parallel plates and the chain length infinity) 

may be written as: 

 

𝐺(𝑔, 𝑧, 𝐿 = ∞) =
𝑧+2𝑔

1−𝑧−2𝑔
                                                                                                                

(3) 

 

The partition function of an infinitely long 

polymer chain is obtained for a finite 

separation (L) in between the confining plates. 

Accordingly, we calculate the thermo-

dynamical properties of the confined chain. It 

is well known that the critical value of the step 

fugacity is 0.5 for a finite separation (L) in 

between parallel plates, and the critical value 

of the step fugacity is 0.33 for L ≥ N and N→∞.  
 

We use canonical ensemble formalism to 

obtain an exact number (CN
L) of a real flexible 

polymer chain conformation, and accordingly, 

the equilibrium statistics of the chain are 

obtained for a case when a pair of 

impenetrable parallel plate confines the 

polymer chain; an exact number of the 

conformations is written as follows for a case 

when L<N, 

( )( ) ( )1

1

1 2 . 1
2 2

!

N
L N N L

N

L

N N N N L
C

L

−
−

=

− −  + −
= +      

                   (4) 

We have many conformations (CN
B) of a 

chain for a case when this short flexible chain 

is in the bulk (L≥N), and the number of the 

conformations for the bulk (L≥N) case is 

written as: 

𝐶𝑁
𝐵 = ∑ 𝐶𝑖

𝐿 + 1 = 3𝑁𝑁−1
𝑖=1                                                                                

(5) 

3B. Equilibrium statistics of a confined Self 

Avoiding flexible polymer chain using 

Canonical Ensemble approach: An effect of 

the confinement is shown in figure 2, where a 

fraction of the polymerized (CN
L) and a 

fraction of non-polymerized (1- CN
L) short 

polymer chain conformations are 

demonstrated for a set of values of the plates 

separation (L); and the chain length is an N 

monomers. We have divided the terms CN
L 

and (1- CN
L) by 3N to obtain the said fraction 

of the polymerized and non-polymerized chain 

conformations, respectively.  
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We have calculated the force [1,2,9] of the 

confinement (fN
L) acting on a short polymer 

chain of an N monomers due to parallel plates, 

and the force is acting perpendicular to the 

plane of the plates while the separation in 

between the plate is L. While calculating the 

force, the free energy of the self-avoiding 

polymer chain is written in a unit of the thermal 

energy as E(=-kBTLog[CN
L]), and thermal 

energy (kBT) we have taken unity. Therefore, a 

graph between fN
L versus L and for an N 

monomers length chain is shown using figure 

3(a). The following equation gives the force of 

the confinement as: 

𝑓𝑁
𝐿 ≅ −𝐿𝑜𝑔[2] +

𝜕{
𝐿𝑜𝑔 ∏ (𝑁−𝐿+1)𝐿

𝐿=1
𝐿!

}

𝜕𝐿
   

 

                                    (6) 
 

The above equation (i.e., equation 6) is 

simplified to the following relation to seeing 

that fN
L =-Log[2]-Log[L/N]. Thus, the force 

bears logarithmic singularity provided L<N, 

L≥1, and N→∞ for an infinitely long chain. 
 

𝑓𝑁
𝐿 ≅ 𝐿𝑜𝑔[

𝑁

2𝐿
]                                                                  

 

(7) 

 

                                     

 
(a) 

 
(b) 

                                                                                                                 
Figure 3: The force of the confinement which is 

acting perpendicular to the plane of the plates, and 

its nature of variation for a few sets of (N, L) has been 

shown in this figure 3(A) for a short chain of length 

an N monomers and we increase the separation in-

between plates (L=2, 4, 6, 8 and 10) in a unit of 

monomer length. Figure 3(B) shows nature of 

variation of the confining force per monomer of the 

confined chain for set of N, L values. 

 

The entropic surface tension ( L

N ) of a short-

chain and an infinitely long confined real 

polymer chain solution may be obtained using 

the following relation: 
 

( )L

N

E

A





=                                                                                        

(8) 

 

Where E(=-kBTLog[CN
L]) is the Helmholtz 

free energy of a short polymer chain under 

confined geometry; and, again, we have taken 

the value of the thermal energy (kBT) equal to 

unity for the sake of mathematical simplicity. 

The maximum change in the area is [(N-L+1)2 

- (N-L)2]/2 when the walker steps one unit 

along the x-direction, and the plate separation 

varies in the unit of one monomer length. For 

a confined chain, LMax=N-1. It is to be noted 

Figure 2: We have shown in figure 2, an average 

number of the polymer chain’s conformations (1-

CNL)/3N which were not polymerized due to a pair 

of an impenetrable plate’s confinement. The 

curves for CNL/3N and (1-CNL)/3N intersect at 

the 50% value of the 
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here that the surface tension for the present 

case has an entropic origin, and the value of the 

surface tension for a self-avoiding confined 

chain is written as: 

 

( )

 

( )
2 2

1 1
2  2   

2 !2L

N

Log L Log
Log LN

N L N L N L


   
   
   = + +

− − −
                              

(9) 

The nature of variation of the entropic surface 

tension of a short polymer chain with 

confining plate separation is shown in figure 

4. 

We have also calculated the monomer 

number density ( L

N ) profile, and a plot on 

the density profile for the confined flexible 

chain is shown in figure 5; we have an exact 

expression for the number density of an N 

monomers long chain, and the density is 

written as follows: 

( ) ( )

( )
1

1 1
[2 ] 

!

L N L

N

N N N L

L N L
 + −

−  − +
=

−
                                       

(10) 

 
 

 
 

Figure 4: A plot on the entropic surface tension (
L

N

) of a short polymer chain (N =11, 12, ..., 30 

monomers) confined in between a pair of parallel 

plates is shown in this figure, and the plates are 

separated by a distance L (= 1, 2, ..., 10) monomers. 

 

The monomer number density profile is shown 

in figure 5 for the confinement condition of a 

short flexible polymer chain for the given 

values of L. For L=0 and for a non-zero value 

of L, and for a confined chain (L < N), the 

monomer density profile is written as equation 

10. 
 

 

 
Figure 5: This figure shows the logarithmic value of 

the number density profile of a real flexible polymer 

chain. The length of the polymer chain (N) is varied 

from 11 to 30 monomers, and the separation (L) of 

the parallel plate is varied from 1 to 10 monomers. 

 

4. Discussion: A lattice model of the fully 

directed self-avoiding walk is used to mimic 

the conformations of an infinitely long and a 

short confined flexible polymer chain, where 

the polymer chain is confined by a pair of 

impenetrable parallel plates (as shown 

schematically in figure 1). The confined 

regions in between a pair of parallel plates lead 

to different values of the step fugacity for the 

walker along and perpendicular to the plane 

of the confining plates. Therefore, along the 

plane of the plates, we have one value of step 

fugacity (i.e., g), and in a direction 

perpendicular to the plane of the confining 

plates, we have another value (i.e., z) of the 

step fugacity. We used the generating function 

method to solve the model analytically; and we 

obtained a general expression for the grand 

canonical partition function of an infinitely 

long self-avoiding flexible polymer chain for 

any given value of plate separation (L).  

We have also obtained an exact expression of 

the canonical partition function for a short 

flexible self-avoiding polymer chain. The 

chain is made of an N monomers; the plate 

separation equals L monomers. We calculated 

an exact percentage of the polymer 

conformations which were not polymerized 

(suppressed) due to the confinement conditions 

imposed on the chain by the pair of parallel 

impenetrable plates. We derived expressions 
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for the force of the confinement, the entropic 

surface tension, and the monomer number 

density profile for a short-chain length of an N 

monomers and we derived a condition when an 

infinitely long chain is confined by the pair of 

plates for the plate separation L. 

We have plotted (CN
L)/3N, i.e., the number of a 

confined flexible polymer chain conformations 

of an N monomers long polymer chain along 

with the conformations, i.e., (1-CN
L)/3N, which 

is suppressed due to the confinement, for 

different values of the plate separation (L); and 

we have shown the polymerized and 

suppressed fractions of the conformations in 

figure 2. It is seen from this figure that as we 

increase the length of the chain for a given 

value of the plate separation (L), the 

percentage of the polymerized chain’s 

conformations decreases. Accordingly, the 

percentage of the non-polymerized/suppressed 

conformations increases due to the 

confinement. It is also found that the 

percentage of the polymerized conformations 

increases for a given length of the chain as the 

separation between the plates increases. The 

force of the confinement is a function of the 

chain length and the separation between the 

confining plates. It is found from analytical 

calculations that the force of confinement 

decreases logarithmically as we increase the 

plate separation for a given length of the 

confined chain. While the force of confinement 

increases logarithmically as we increase the 

length of the confined chain, provided the plate 

separation is retained constant. We have shown 

the nature of confining force which acts on a 

short polymer chain, in figure 3 for a set of N 

and L values. 

 

The entropic surface energy per unit surface 

area (i. e. the entropic surface tension) for a 

confined flexible chain is shown in figure 4; it 

is seen that the surface tension of the confined 

chain increases for a given length of the chain 

as we increase the length of confinement, and 

it starts decreasing after a particular value of L. 

The surface tension of a confined chain also 

increases for a given value of L as we increase 

the number of monomers in the confined chain. 

An actual dependency of the surface tension on 

N and L is shown in figure 4, and the 

mathematical form of the entropic surface 

tension is given by equation 9. Though we 

have a very dilute chain concentration, 

therefore, the entropic surface tension of a self-

avoiding confined flexible polymer chain 

vanishes in the thermodynamic limit. The 

monomer number per unit areal extension of 

the confined flexible chain is shown in figure 

5. It is seen from this figure that the monomer 

density increases as the length of the chain 

increases and L remains fixed, and also the 

monomer density increases as we increase L 

for a given length of the confined chain. The 

nature of the free energy curve for a confined 

short chain is also shown in figure 6 for the 

completeness. It is seen from figure 6 that in 

the thermodynamic limit, the free energy per 

monomer of the confined flexible chain is 

Log[gc(2D)]-1, where gc(2D) = 0.5. 

We have taken a factor α = (L/N) to report the 

confining force, the entropic surface tension, 

the monomer number density, and the free 

energy of a confined chain in terms of α (<1, 

for a confined chain); and accordingly, we 

have plotted these thermo-dynamical 

parameters in the thermodynamic limit in 

figure 7 for the sake of completeness. 

Therefore, we have these thermo-dynamical 

parameters that may be written in the thermo-

dynamical limit (N→∞) as (i. e. for an 

infinitely long confined chain): 

 

   log 2L

Nf Log → = − −

                                                                                 

(11) 

 
( )

 ( )
( )

2

2 12 2
*

1 1

L

N

LogLog
N




 

−
= − +

− −

                                                                      

(12) 

( )    ( )1 2 1

L

NLog
Log Log

N


  

   = − + −

                                                       (13) 

and finally, the free energy per 

monomer(ε=EN
L/N) of a confined chain is 

written as: 
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( )    1 2Log Log    = − − + −

                                                                                                    

(14) 

 
Figure 6: We have shown the free energy graph of 

a confined flexible polymer chain for the given 

values of L and N in this figure. The Helmholtz free 

energy is a function of N and L, and the free energy 

is approximated as EN
L ≂-NLog[2]+LLog[2]-

LLog[N]+LLog[L]-L. The thermal energy is set to 

unity for the sake of mathematical simplicity. 

A method of calculations reported in this 

manuscript may be easily extended to calculate 

the thermodynamics of an infinitely long and a 

short self-avoiding polymer chain confined to 

a length L for other versions of the 

directed/isotropic walk models on different 

possible lattices. It is also to be noted from 

reports that the qualitative nature of the phase 

diagram obtained for an isotropic self-avoiding 

walk model is the same as that of the phase 

diagram of a directed walk model of the 

problem [10], and therefore, our findings may 

be relevant to understand the thermodynamics 

of a confined three-dimensional polymer 

chain. 

Our calculations include entropy of the 

confined chain where those conformations 

were chosen, which are in the form of polymer 

bridges or polymer trains, though we have not 

considered the loop-like conformations; 

However, the entropy of the confined chain has 

a monotonous variation with N and or L for 

other versions (i.e., isotropic or partially 

directed walk model of the confined chain) of 

the confined polymer models; therefore 

physical insight will remain same for the 

confined chain when one includes polymer 

loop like conformations for such studies. It is 

also to be noted that in the presence of another 

confining plate (i.e., a plate located at x = L), 

the entropy of the chain is reduced due to 

excluded volume interaction among the 

monomers of the confined chain. Hence, many 

chain conformations are suppressed for any 

value of L<N, i.e., not polymerized.  

 

Figure 7: This figure no. 7A shows the force of the 

confinement acting on the chain as a function of α 

(as shown in the equation 11); the entropic surface 

tension of an N monomers long chain is shown in 

the figure (7B), and the equation 12; the logarithmic 

value of the monomer density per monomer is 

shown in the figure (7C), and the equation 13; and 

also, the free energy per monomer of the confined 

chain (ε) is shown in the figure (7D), and equation 

14, as a function of α. 

5. Challenges: There are limitations regarding 

visualizing a macromolecule in the restricted 

geometries, though we have reports on single 

macromolecule manipulations [11] and please 

also see the references quoted therein. 

Therefore, we can expect that it may be 

possible to track single macromolecule and 

measure its physical properties under the 

confined geometries soon.  

6. Conclusion and Future Scope: The lattice 

model of a polymer chain has limitations, as 

the lattice model mimics discrete links of the 

monomers of a chain. Therefore, finite length 

fluctuations related physics of the system may 

have different results from real situations of the 

polymer Physics. Still, in the case of phase 

transitions, there are fluctuations of all length 

scales. Correlation length extends to the size of 

the confined chain length. Therefore, the phase 
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transitions which occur in the thermodynamic 

limit may not have any sensitivity regarding 

the finite and non-zero size of the monomers. 

Though there are studies based on continuum 

models of the polymer chain, it has been found 

that the Physics of polymer chain derived using 

continuum and discrete models have a 

qualitative similarity [1,3,5,11, 16].  
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