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Abstract: Quantum learning paradigms address the question of how best to harness conceptual 

elements of quantum mechanics and information processing to improve operability and 

functionality of a computing system for specific tasks through experience. It is one of the fastest 

evolving framework, which lies at the intersection of physics, statistics and information 

processing, and is the next frontier for data sciences, machine learning and artificial intelligence. 

Progress in quantum learning paradigms is driven by multiple factors: need for more efficient data 

storage and computational speed, development of novel algorithms as well as structural resonances 

between specific physical systems and learning architectures. Given the demand for better 

computation methods for data-intensive processes in areas such as advanced scientific analysis 

and commerce as well as for facilitating more data-driven decision-making in education, energy, 

marketing, pharmaceuticals and healthcare, finance and industry. 

 

Introduction: Quantum 1.0 was the 

revolutionary utilization of quantum resources 

for technology, primarily electrical and optical, 

such as transistors and optical masers, while 

Quantum 2.0 was about harnessing non-

classical elements in the quantum formalism 

such as entanglement for information 

processing (1–15). Quantum mechanics have 

been used for undertaking information 

processing tasks such as teleportation, 

superdense coding, remote state preparation, 

quantum tomography, quantum cryptography 

and quantum key distribution, circuit-based 

and measurement-based quantum computing, 

quantum network coding and quantum 

internet, quantum random walks and quantum 

transduction (16–55). What can be called as 

Quantum 3.0 would be the harnessing of 

quantum resource and representation theory 

for a novel computational learning paradigm, 

along with quantum generalizations of existing 

classical computational learning models 

(56,57). This is the next frontier of exploration 

in the quantum realm and seeks to address the 

question: can we fundamentally reframe and 

re-envision learning models when the 

information-system and/or process is quantum 

mechanical in nature?  

The term ‘machine learning’ was coined by 

Arthur Samuel in 1959, in the context of a 

‘looking- ahead’ algorithm implemented on a 

classical computer for a game of checkers, 

realized using a neural net approach with 

randomly connected switching net as well as 

an approach involving a highly organized 

network designed to learn only specific things 

(58). In 1961, the punched-tape system known 

as Cybertron K-100 by Raytheon was 

developed as an early learning system that 

employed pattern recognition on sound 

samples, such as those from sonar signals, for 

learning (59). Basic pattern recognition, 

storage and referencing were the primary 

elements that supported the learning 

framework in the next few decades, such as 

with the work on feed forward networks with 

one layer of modifiable weights connecting 

input units to output units, in what could be 

called reflexive systems that could discover 

hidden relationships in data (60, 61). Machine 

learning addresses the twin questions of what 

fundamental information theoretic laws 

govern all learning systems and how could one 

construct computing systems that can improve 

their functioning through experience (62). For 

various applications, training based on a 

limited set of inputs and outputs obtained from 
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a system for specific empirical task seems to 

be more optimum than trying to predict the 

generalized response of the system in all 

circumstances. 

 

Learning, in the context of information theory, 

describes the improvement of a yardstick or 

performance criterion for a system for a given 

task. For instance, we could seek to classify 

Iris flowers into three species: Iris adriatica, 

Iris taochia and Iris kemaonensis from a 

defining characteristic such as the cumulative 

length measurement of their petals and sepals. 

The yardstick index could be how accurately 

the classification takes place, and the training 

could be over a historical sample of irises from 

a phytologist’s collection. We could also 

employ other criteria that have different 

penalties for incorrect classification. There are 

a number of algorithms for machine learning 

that are applicable to different kinds of datasets 

and problem types. Machine learning 

algorithms probe through various candidate 

models, based on training data and experience, 

to find the one that is optimum for the selected 

performance metric. The diversity of machine-

learning algorithms can be segregated based 

on their manner of representation of candidate 

models (such as decision trees) and their 

manner of probing through the space of 

candidate models (such as evolutionary search 

methods). 

The question is whether loading our 

phytological data into quantum states can 

make this classification better. We could create 

a parameterized quantum circuit or ansatz to 

do this, using a feature map. Any 

parameterized quantum circuit should be able 

to generate maximum number of quantum 

states in the Hilbert space and also have ability 

to entangle constituent qubits. It turns out that 

the variational quantum classifiers (VQCs) 

help classify the irises efficiently, using 

optimizers such as the constrained 

optimization by linear approximation 

optimizer (COBYLA). It is this interface of 

quantum mechanics and machine learning that 

provides various possibilities: machine 

learning with quantum computers, classical 

learning for quantum mechanical problems 

and generalized quantum learning theory. 

Quantum machine learning brings together the 

learning capability and scalable nature of 

machine learning and the speed, efficiency and 

processing power of quantum computers. 

There have been several classical learning 

paradigms that have had quantum analogues 

proposed and realized: quantum neural 

networks, quantum reinforcement learning, 

quantum support vector machines, quantum 

linear regression, cluster detection and 

assignment algorithms, quantum principal 

component analysis and quantum decision tree 

classifier (63–70). In this comprehensive 

review of quantum learning paradigms, we 

will be looking at the spectrum of algorithms 

and protocols, before moving on to 

understanding the conceptual shift that this 

may provide when assessing learning theory 

from the perspective of quantum phenomenon. 

 

Quantum Patterns: The underlying premise 

for the utility of the quantum realm for 

machine learning has to do with the emergence 

of classically anomalistic patterns in data. 

Among phenomena that are intrinsically 

quantum in nature, an interesting example is 

that of quantum revival patterns, where we 

find superposed and displaced replicas of the 

initial state of the system (71–74). Quantum 

Kerr systems have such a kaleidoscopic mode 

of evolving, which is found to be reproducible 

based on interference of trajectories in the 

classical phase space (75). In the quantum-

classical limit, where Planck’s constant h¯ → 

0, it is seen that observables behave differently, 

leading to the preservation or disappearance of 

significant variables and their stochastic 

tendencies, such as for oscillator coordinate 

and spin variable respectively (76). Even in the 

case of skyrmions, we cannot simulate 

quantum skyrmions on classical 

supercomputers due to fundamental 

limitations, particularly around quantum 

fluctuations (77). Quantum patterns are seen as 

periodic magnetic formations that are 

spontaneously formed in antiferromagnetic 

Bose-Einstein condensate (78). When 

ultracold atoms form quantum ferrofluids, we 

find a spontaneous development of coherent 
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quantum density patterns leading to the 

formation of a super-solid (79). When 

nanoscale lead films grown on silicon 

substrates are annealed to high temperatures, 

we observe intricate quantum patterns in the 

energy landscape (80). A beat pattern emerges 

in the quantum magnetoresistance of polar 

semiconductors without a centre of inversion 

symmetry, such as InAs/GaSb, when the 

carrier concentration is high (81). Patterns are 

ubiquitous in quantum chemistry, in properties 

such as chemical hardness and 

electronegativity (82). 

 

Given the ability of classical computers to both 

produce and recognize classical statistical 

data, the extrapolation would be that systems 

that produce classically atypical data, like in 

quantum systems, would also be able to 

recognize such data. This gives us the 

possibility of harnessing the quantum analogue 

of complex classical pattern recognition. 

Pattern recognition compares data input with 

specific memorized patterns, as it processes 

this input. Quantum pattern recognition 

provides a number of advantages over its 

classical counterpart. For instance, if we 

assume a Hopfield network approach for 

pattern recognition, we do so by local 

optimization, while utilising a quantum 

approach such as adiabatic quantum 

computation does so using global optimization 

(83). A realization of this was using the liquid-

state NMR technique, where some of the 

interesting insights included the possibility of 

representing a superposition of recognized 

patterns using a quantum neural register (84). 

The parallelism inherent in quantum 

phenomena such as entanglement facilitate the 

execution of subroutines, even with big data, 

and this is one of the primary reasons for 

quantum machine learning, in general, being 

regarded as being better than its classical 

counterpart. Among pattern recognition 

protocols, one-class classification is important 

due to its applications in areas where detection 

of abnormal data points vis-a-vis instances of 

a known class is needed, using techniques such 

as support vector machines and principal 

component analysis (85–90). This helps in 

addressing problems where we have 

imbalanced datasets, such as in metaheuristics, 

medical image datasets, manufacturing, high-

energy physics and bioinformatics (91–98). 

Recently, a semi-supervised quantum one-

class classification system known as 

Variational Quantum One-Class Classifier 

(VQOCC) was developed using (99). At the 

centre of this proposition is a quantum 

autoencoder, which is basically a circuit that 

undertakes compression of a quantum state 

onto a lesser number of qubits while retaining 

the information encapsulated in the initial state 

(100, 101). Quantum autoencoders have been 

applied to quantum data compression, 

quantum error correction, denoising of data 

and even for preserving entanglement (102–

105). 

 

An important question to be addressed here is 

what can be categorized as a quantum pattern. 

Is it just an arbitrary pattern of quantum 

randomness? Is it the byproduct of a quantum 

pro- cess, such as in cold exciton gases? Is it 

the quantum analogue of classical patterns in 

nature? Harney and Pirandola defined a 

quantum pattern as an m-mode coherent state 

undergoing local kary modulations (106). We 

can also define patterns in the information 

dynamics associated with quantum systems, 

such as in the case of quantum computing and 

communication systems (107). Examples 

would include basis encoding, quantum 

associative memory, amplitude encoding, 

angle encoding, QRAM encoding, quantum 

kernel estimator, variational quantum 

algorithm, variational quantum eigensolver, 

quantum associative memory, amplitude 

amplification, phase shift, oracle operations, 

quantum approximate optimization algorithm 

and quantum key exchange. Along with 

information theoretic arrangement and 

elements as well as quantum data types and 

quantum data structures, we can also specify 

entanglement structures to define the notion of 

quantum patterns (108). There are various 

kinds of entanglement patterns, from 

maximally entangled Dicke states to partially 

entangled cluster states. Even the outcome of 

measurements successively performed on an 
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open quantum system have a pattern because 

of the interaction between system and 

environment. The pattern encapsulates 

information on non- Markovian memory effect 

and the relaxation rates associated with the 

system (109). The primacy of quantum 

patterns can also be seen within phases of 

matter, which can be distinguished by distinct 

symmetry breaking instances - within the 

Landau theory, symmetry of ordering of 

constituents of a physical system differentiates 

one phase from others. In certain systems, such 

as chiral spin liquids, even without symmetry 

breaking, we have different characteristics due 

to what is known as topological order, which 

has been posited to describe entanglement in 

many-body systems (110). 

 

Quantum Algorithmic Resource-Pool: The 

central question around assessing the 

possibilities in quantum machine learning is 

whether we have the algorithmic tools in the 

quantum domain for the same. A quantum 

algorithm is a succession of instructions for 

tackling a problem on a practical quantum 

computer (111). Cleve et al. highlighted that a 

common thread underlying all quantum 

algorithms can be as- certain when “quantum 

computation is viewed as multiparticle 

interference” (112). By and large, we have 

quantum search algorithms, quantum 

simulations of quantum systems on a quantum 

computer and algorithms premised on 

quantum implementations of the Fourier 

transform like Shor and Deutsch-Josza 

algorithm. Quantum supremacy or the 

enhancement of computational ability using 

quantum systems over that of classical 

counterparts has heralded the age of noisy 

intermediate-scale quantum (NISQ) 

technologies (36, 113). One of the earliest 

quan- tum algorithms came with by 

formulation of an algorithmic solution to a 

special case of the hidden subgroup problem 

by Peter Shor (114). Quantum Merlin-Arthur 

(QMA) completeness of a problem highlights 

that a supposed solution to it can be verified by 

a quantum computing system - a condition that 

has been extended to k unentangled provers in 

QMA(k) class problems (115, 116). When it 

comes to claims of quantum supremacy, we 

often speak of speedup, resource reduction, 

scaling and ability to address greater number 

as well as variety of problems. Quantum 

speedup can be contextually defined in terms 

of the asymptotic behavior of the ratio of the 

times taken by a specific classical and quantum 

algorithm for a particular problem when the 

size of the problem is made to be very large 

(117). Speedup can be provable, like in 

Grover’s algorithm, while in some cases the 

enhancement due to the quantum effects is not 

obvious, like in quantum annealing (118, 119). 

Quantum resource optimization is seen in 

realization of randomness processing with 

quantum Bernoulli factories (120). 

 

The reason for enhancement of computational 

power, when it comes to machine learning and 

data analysis, with quantum machine learning 

arises due to the inherent primacy, within 

quantum mechanics, of high-dimensional 

vector spaces and, more importantly, matrix 

transformations between vectors in such 

spaces, as is important for data analytics and 

machine learning methods. The speedup is 

especially pronounced when the matrices 

being dealt with have an element of sparseness 

or are low-rank matrices (121, 122). A classic 

example arises in a key tool used for machine 

learning - principal component analysis, which 

evaluates the eigensystem (and corresponding 

principal components) of the covariance 

matrix of data. Using a quantum random 

access memory, we initialize the vectors for a 

classical principal component analysis 

protocol onto quantum states and utilise the 

density matrix of the states (instead of the 

covariance matrix), which when exponentiated 

and operated on by a conditional SWAP 

operation for the quantum phase algorithm, 

yields the eigensystem that forms the premise 

of the principal component analysis (67). The 

algorithmic scaling is to the order of the square 

of the logarithm of the size of the system, in 

query as well as computational complexity. 

Essentially, the quantum principal component 

analysis scales exponentially faster than the 

classical counterpart. 
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While quantum principal component analysis 

is an unsupervised method that identifies pat- 

terns within higher-dimensional data for the 

reduction of data complexity with the retention 

of most of the information, there are various 

supervised learning algorithms that have had a 

quantum implementation (123). One such 

algorithm relates to quantum support vectors. 

Support vector machines undertake regression 

and classification using the delineation of 

feature vectors of the data into distinct classes 

around a hyperplane that is at maximum 

distance from the nearest data-points in either 

classes around it (124). If the data is not 

separable into distinct classes, we can use the 

kernel trick to project the data into a higher-

dimensional space- a pursuit that by Cover’s 

theorem can help in attaining separability in 

the data-set (125). Quantum algorithms such as 

Grover’s algorithm are premised on binary 

classification. Even in cases of machine 

learning algorithms based on adiabatic 

quantum evolution, we define our approach in 

terms of a strong classifier that discerns 

whether a data-point is correct or erroneous 

based on a program specification (126). Like 

in the classical case, the quantum support 

vector machine relies on the definition of a 

quantum kernel that we can create by using a 

quantum feature map ϕ(⃗x) between classical 

feature vectors ⃗x and a Hilbert space to help us 

obtain the kernel K(⃗xi, ⃗xj) = |⟨ϕ(⃗xi)|ϕ(⃗xj)|
2. We 

can then expand the hyperplane in the general 

form: f(⃗x) = Σi αiyiK(⃗xi, ⃗x), where αi denote 

bounded positive quantities and yi the data 

labels. We can then use measures like the 

Gaussian or Rademacher Complexity to 

evaluate the classification error, based on this 

hyperplane definition and the data-set (127). 

While the quantum support vector machine 

paradigm defined using Grover’s algorithm 

gives a quadratic speedup, the implementation 

using the least squares approach provides an 

exponential speedup over classical algorithms 

(64). In recent years, we have had quantum 

support vector machine implementations with 

the Newton method, amplitude estimation, 

gradient descent and using quantum annealers 

as well as variational quantum-circuitry (128–

132). 

 

 
 
 Figure 1: Swap Test 
 

A natural extension of this comes with 

quantum k-nearest neighbour algorithms. 

Instead of a hyperplane as in the case of 

support vector machines, the underlying 

assumption of k-nearest neighbour methods is 

that the likelihood of two data-points that are 

proximal being of the same type is high (133). 

Labelled training vectors are used as reference 

for comparison of unlabelled testing vectors to 

determine k nearest train-state neighbours for 

the specific testing vector-state, whose label is 

ascertained using majority voting. In the 

quantum picture, we use the concept of fidelity 

of a specific testing state |ψ⟩ with respect to 

multiple training states |ϕj⟩: Fj = |⟨ψ|ϕj⟩|2.  After 

taking an initial set of candidate neighbour 

states, we use quantum search algorithms to 

find other states and corresponding indices till 

the nearest neighbours are found. The 

functional way to obtain the fidelity is by using 

the swap test. In this test (Figure 1), we begin 

with two quantum states |a⟩ and |b⟩ along with 

an ancilla qubit initialized to |0⟩anc, on which 

we apply the Hadamard operation on the 

ancilla qubit. We thereafter apply a controlled 

swap operation on the ancilla qubit. A 

controlled swap operation is a gate where 

target qubits |a⟩ and |b⟩ are swapped if the 

control (in this case, the ancilla qubit) is in the 

state |1⟩. Applying a second Hadamard gate on 

the ancilla gives us the state |χ⟩ = 1/2 |0⟩anc(|a, 

b⟩ + |b, a⟩) + 1/2 |1⟩anc(|a, b⟩ − |b, a⟩).  
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2 

The measurement of the state |0⟩anc has the 

associated probability P(|0⟩anc) = 1/2 + 1/2 

|⟨a|b⟩|2. The inner product in this expression 

makes the overlap between the states primary: 

orthogonality gives us a probability of 0.5 

while maximum overlaps gives a unity 

probability. This method can be used to find 

the distance between real-valued multi-

dimensional vectors with the use of a quantum 

measurement (69). We can also undertake 

more rigorous pattern recognition between 

binary strings |a1, a2, ..., an⟩ and |b1, b2, ..., bn⟩, 
using an extension of the construction in the k- 

nearest cluster model by initializing a state |ψ⟩ 
= |a1, a2, ..., an, b1, b2, ..., bn⟩⊗ √1 (|0⟩+|1⟩)anc, 

undertaking a XOR operation between the 

respective (ak, bk)∀k before storing it in place 

of the bk∀k, and finally undertaking a 

Hadamard operation on the ancilla qubit (134).  

If we measure the ancilla qubit in the ground 

state |0⟩anc, we obtain a resultant state whose 

amplitude has a scaling characteristic 

dependent on the Hamming distance between 

the binary strings. 

 

Quantum Reinforcement Learning and 

Deep Learning: Going beyond supervised or 

unsupervised machine learning models, a 

major area of contemporary research has been 

in quantum-enhanced reinforcement learning, 

which is premised on the adaptive evolution of 

a quantum system based on reinforcement 

from a classical or quantum environment 

(135). The system receives percepts from the 

environment and undertakes actions. Unlike in 

conventional learning models, the learner in a 

reinforcement learning model has an influence 

on the state of the environment around it as 

much as it is influenced by it, thereby making 

it impossible to represent the environment in 

terms of a stationary memory. Both - the 

system and the environment, are stored as 

maps with memory, and the history of 

interactions between the two is the 

fundamental element in reinforcement 

learning. In the case of quantum reinforcement 

learning (QML), this history must be 

maintained in a quantum setting. In QML, we 

define a Hilbert space for the percept and 

action states- HS and HA respectively.  

 

 
 
Figure 2: Quantum Reinforcement Learning (QRL) 

is premised on testing agent-environment interaction 

where the percept and action states have distinct 

Hilbert spaces associated with them. The register RT 

is not controlled by the agent or by the environment. 

 

The agent and environment both have memory 

registers (RA and RE respectively) to store the 

histories of the system-environment 

composite. We can model the interaction with 

a distinct Hilbert space HC and we can 

characterize the agent (environment) my a 

series of Completely Positive Trace Preserving 

(CPTP) maps {MiA}i ({MiE }i) that acts on a 

resultant register formed by concate- nation of 

the registers of system-interaction RARC 

(environment-interaction RCRE) systems. The 

performance of the system-environment is 

assessed against a figure of merit. Dunjko et al 

showed that a quantum agent will outperform 

a classical learning agent associated with a 

clas- sically delineated, controllable epochal 

environment against a particular figure of 

merit, if we were to consider a selected 

classical sporadic testing element (136). The 

quantum enhancement arises from being able 

to extract additional attributes from the 

environment for optimization of a classical 

agent. Our point of interest is in environments 

that are quantum in nature and that facilitate 

the preservation of superposition of percepts 

and actions. 

When we are talking of quantum 

reinforcement learning, it is imperative to 

discuss what we mean by quantum 

accessibility. Quantum accessibility implies 

the utilization of access of the agent to the 
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environment for the simulation of an oracle Oq 

that behaves as follows: 

 
where R is the value of the ’reward’ that the 

agent obtains once it successfully executes the 

actions a1, a2, ..., ak, for some auxiliary state 

|x⟩. In the cumulative process, we see the 

utilization of a quantum interaction using what 

is known as oracularization with the 

environment to undertake effective simulation 

of access to the oracle (which encapsulates 

important information about the environment), 

followed by the usage of this information for 

determining behavior that is optimum in the 

given environment. We can attain a greater 

insight into the oracularization process by 

understanding the import of an auxiliary state, 

which usually comprises of percept states |s1, 

s2, ..., sk⟩, the reward state |R⟩ and |e1, e2, ..., ek⟩  
that are auxiliary quantum subsystems kept 

within the environment. For the simulation of 

the oracle, these states need to be con- trolled 

and erased (137). To undertake this, the agent 

should be able to undertake modification of 

specific memory components of the 

environment with what are known as register 

scavenging and register hijacking operations, 

followed by a way to ’uncompute’ with the 

implementation of the Hermitian adjoint of the 

net unitary (map) that the environment 

implements. There are two primary kinds of 

reinforcement learning paradigms with 

specific quantum realizations: value-based, 

like in the case of Q-learning, which is 

premised on the learning of a value function 

that guides how the system environment 

makes decisions at each time step, as well as 

policy- gradient methods that optimizes a 

policy (function) π(a|s; θ) using the parameter 

θ (138–141). An important concept in this 

regard is meta-learning, wherein the learning 

agent undertakes the identification of its meta-

parameter configuration that is optimum so as 

to be able to facilitate the optimization of 

performance. This parameter meta-learning is 

done by having the learning agent monitor its 

performance, and utilising a metaparameter 

register as well as techniques like adaptive 

Bayesian quantum estimation (142). The 

reduction of the agent-environment interaction 

to a unitary oracular query is not feasible when 

we consider memory effects. In general, the 

oracular element may vary temporally and in 

such scenarios amplifying amplitude using 

Grover-type methods may be a possible 

approach to undertake reinforced learning in 

reward spaces that have an increasing 

monotonicity in the success probability. 

 

Deep learning has also seen a quantum 

expansion in recent years. Deep learning is 

premised on using artificial neural networks 

for discovering the representations required for 

the detection and classification of features 

from raw data (143, 144). The basic unit of a 

neural network is a perceptron or a single 

artificial neuron. Gallant described one of the 

first perceptron-based connectionist models 

where each cell i computes a single activation 

ui, which may be input to other cells or be an 

output of the network (145). Ricks et al. gave 

one of the earliest quantum neural network 

models based on implementation of quantum 

circuitry with gates whose weights are evolved 

through learning using quantum search as well 

as piecewise weight allocation (146). In each 

step, we have a density operator for the qubits 

representing the hidden states, which can can 

be extracted with any output ancilliaries using 

a partial trace operator and fed forward to the 

next layer of the neural network where the 

unitary transformations that encapsulate the 

action of perceptrons can be applied. There 

have been recent works on Bayesian 

approaches being implemented using quantum 

algorithms to learn Gaussian processes to train 

neural networks that are arbitrarily deep, with 

a quantum matrix inversion protocol being the 

core routine (147). In the quantum 

convolutional neural network presented by 

Cong et al (148), the modeling of the 

convolutional layer is in terms of a unitary 

transformation (on the state density of the 

input) that is quasi-local and is applied in error 

correction and phase recognition in quantum 

systems. The forward pass of the convolutional 

neural network can be computed as a 

convolutional product using quantum 

algorithmic tools even as gradient descent 
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methods can give us an idea about what are the 

relevant network parameters in the quantum 

context (149). There have also been hybrid 

models with quanvolutional layers in the 

network where we undertake local 

transformation of the data with several random 

quantum circuits in the set bounded-error 

quantum polynomial time (150). Recently, 

quanvolutional methods were used for 

physiological application such as for body part 

recognition using Hybrid Quantum 

Convolutional Neural Networks, although in 

this case the classical counterpart was found to 

have a greater validation accuracy by 0.5% 

(151). 

Quantum Natural Language Processing, 

Quantum Advantage and the Path Forward 

Language is one of the earliest forms of 

representative evolution for humankind. 

Notwithstanding the tale of the Tower of Babel 

or the Gigantomachy myth, the diversity and 

complexity of language is of prime interest for 

computational representation and processing. 

Natural language processing is all about 

harnessing computational methods for the 

learning and production of content in human 

languages. We have come a long way from 

simply analysing the disparate linguistic forms 

and recognizing speech patterns to the 

creations of dialogues, translating speech from 

speech as well as the identification of 

emotional response of users towards services 

and products. The synchronic model of 

language aligns with the psycholinguistic 

understanding which highlights that language 

is dynamic (152). In any speech-based natural 

language pro- cessing (NLP) system, we have 

computation based on phonetic, phonemic and 

prosodic rules, besides the morphemic analysis 

which is as relevant for other kinds of NLPs as 

well (153–155). Higher levels of natural 

language processing include the lexical, the 

syntactic, the semantic, the discourse-oriented 

and the pragmatic (156). When it comes to 

natural language processing, we can have 

quantitative statistical approaches like the 

Hidden Markov models, connectionist 

approaches that are based on inter-related 

fundamental processing units as well as 

symbolic ap- proaches that lay emphasis on the 

logic or rules that a linguistic framework 

encapsulates. Zeng and Coecke were among 

the first to give us a quantum version of natural 

language processing when they employed the 

closest vector problem for sentence similarity 

identification within the distributional 

compositional categorical (DisCoCat) model 

given by Coecke, Sadrzadeh and Clark (157–

159). In the compositional distribution model, 

meanings are encapsulated in quantum states 

while quantum measurements give us the 

grammatical structure for a specific sentence 

and context (160). The embedding of the 

language in the vector space of quantum 

systems naturally leads to word-correlations 

represented by the vector geometry, even as we 

map diagrams formed from parsing of 

sentences to quantum variational circuits. 

Essential quantum properties such as 

superposition helps us in the modelling of 

uncertainties in the language while phenomena 

like entanglement help us in describing how 

semantics and syntax are com- posed and 

distributed. Recently, natural language 

processing experiments have been practically 

realized for over 100 sentences on the Noisy 

Intermediate-Scale Quantum (NISQ) 

computing system provided by IBM Quantum 

(161). 

 

When we speak about quantum natural 

language processing, in particular, and 

machine learning, in general, the elephant in 

the room is: how much of an advantage do we 

obtain using quantum systems over classical 

ones? The ’quantum native’ view of quantum 

natural language processing which posits that 

the vector-landscape provided by quantum 

systems is better suited for the linguistic- 

syntactic, semantic and pragmatic elements, is 

preliminary and unsubstantiated by practical 

realizations, with a critical shortcoming being 

the primary reliance on quantum RAMs, which 

are expensive and not yet empirically 

implemented. More broadly, there are many 

aspects of quantum computing that are often 

off-set by machine learning paradigms.  

 

For instance, the size of inputs is usually small, 

such as in fault-tolerant algorithms, while there 
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could high-dimensional tensorial structures 

with numerous entries in machine learning. 

The problems in machine learning can be 

highly unstructured and complex while 

problems studied in quantum computing are 

structured, often with elements of regularity 

and periodicity. Theory is defined and 

delineated in quantum computing problems 

while empiricism is preeminent in machine 

learning, with modelling and interpolations 

being important in the latter. Quantum 

computing can have absolute benchmarks like 

the scaling of run-time while machine learning 

have more constructivist benchmarks between 

disparate models. Quantum advantage can be 

spoken of in terms of solvability, expressivity 

of the class of the model, size of training 

sample needed, generalizability and how the 

optimization landscape is structured (162–

171). Due to the need to be able to capture the 

system dynamics in terms of quantum systems 

and circuitry, we can only gauge performance 

of machine learning algorithms in specific 

selected contexts and examples, with this 

selectivity preventing any generalizability of 

performance-based ad- vantage, if any. Such 

constraints also exist for readout and loading 

of data, when it comes to quantum examples. 

Performance parameters are also highly 

contextual and it is not straight-forward to 

assess if any ’quantum advantage’ is due to the 

specific way in which we have selected 

benchmarking threshholds and hyper-

parameters or whether they are actually 

observations made structurally. There may be 

a need to move towards studying Quantum 3.0, 

the revolution of quantum learning theory, as a 

paradigm in itself, without needing to resort to 

bylines towards ’quantum advantage’ and 

’quantum supremacy’. For example, classical 

intractability of kernels being bypassed using 

quantum tools can be an interesting pursuit but 

given that such kernels are not found to be 

utilizable in realizable machine learning, such 

an approach has no practical relevance. Today, 

we have moved beyond kernel methods with 

even more efficient ones like data re-uploading 

and explicit models (172, 173). We now have 

quantum machine learning models that have 

features that preserve privacy as well as those 

that take into consideration the impact of 

decoherence (174, 175). The future is bright 

for quantum machine learning, even as the 

intersection of quantum mechanics, learning 

theory and information processing is explored 

to find novel methods of deploying artificial 

intelligence. 
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