
  CNS&E Journal Volume 1 (2), March 2024 
 

151 
 

Electronic Motion and Path Study in Presence of Varying Electric 

Field Using SciLab 6.1.1 for Coupled Differential Equations 

Ravindra Singh*, Shiv Shankar Gaur 

Department of Physics, Shivaji College (University of Delhi), Raja Garden New Delhi-110027. 

Volume 1, Issue 2, March 2024 

Received:9 January, 2024; Accepted: 4 March, 2024 

DOI: https://doi.org/10.63015/5c-2412.1.2 

 

Corresponding author email: ravindrasingh@shivaji.du.ac.in 

Abstract:  The study of electronic motion of the electron and its path has been investigated using coupled 

linear differential equations in presence of electric field. The program executed using Scilab for the 

electronic motion. 2-D & 3-D trajectories of the electronic path and the variation and the distances in x & 

y directions with constant Electric field studied. Plotting of trajectories successfully done with Scilab 

software 6.1.1. Here L.T and with D’operator methods shows same results. 3-D trajectory of the electronic 

motion is periodic at particular frequencies; along y direction the electrons gain more energy and having 

more potential with increasing frequency and the investigation of oscillations under given conditions is 

found to be much higher. 
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1. Introduction: The new approaches of the 

electron path had been studied in the last three 

decades very fast. Everywhere in this universe 

there is existence of the electronic motion. The 

electronic path motion is different in liquid nano 

plasma and liquid magnetite plasma. The electrons 

are negatively-charged particles having mass that 

is approximately 1/1836 that of the proton and 

behave dual nature. The electronic world is 

everywhere in the form of mobile phones, 

software, electronic music, radio and television 

broadcasting, the electrical energy grid, air and 

space travel, engineering communications and a 

wide range of other areas. The study of electrons 

path with an experiment done and which interferes 

in the same manner as water, acoustical or light 

waves do [1-2]. The e/m, the ratio for e/m is 

1.758820 × 1011 C/kg. Two simulation modules 

also can be used to find the value of e/m ratio for 

an electron. The electronic path is capable to send 

the signals from one part of machine to another. 

Electrical resistivity of metal wires shows that it 

increases as their width decreases [3-5].  The 

simulation of electron and particle in cell are very 

important these days. The mean free path λ of 

electron and carrier relaxation time τ of the twenty 

most conductive elemental metals are determined 

by numerical integration over the Fermi 

surface obtained from first-principles, using 

constant λ or τ approximations and wave-vector 

dependent Fermi velocities vf (k) [6]. The path of 

a particle of mass m carrying a charge e is 

determined by the author ( Herbert Stanley Allen) 

in combined magnetic and electric fields, when the 

lines of force are radial and are such as might be 

due to a single pole of strength μ coincident with 

an electric charge k [7]. The electrons orbiting 

around their common barycenter can form bound 

states and have a triplet spin structure which is 

independent of the center-of-mass momentum [8]. 

The resonance in spin can be induced by high-

frequency electric fields in materials with a spin–

orbit interaction; the oscillation of the electrons 

creates a momentum-dependent effective 

magnetic field acting on the electron spin [9-12]. 
The electron cyclotron drift instability driven by 

the electron E × B drift in partially magnetized 

plasmas that is investigated by Salomon Janhunen 

et.al. instability is so highly, resolved particle-in-

cell simulations [13]. The existence of intense 

nonstationary processes in helical electron beams 

(HEB) is done experimentally by [14-15] and the 

study of helical electron beams (HEB) with 

disturbed axial symmetry of currents density and 

HEB with locking electrons in magnetic trap done 

by A. N. Kuftin et.al. 

2. General Discussion: The path of an electron 

in a magnetic field is shown in figure 1 for which 

the magnetic force can be find by using the 

formula Bev = mv2/r where B is the magnetic field 

of strength, e is the electronic charge and v is the 

https://cnsejournals.org/cloud/electronic-motion-and-path-study-in-presence-of-varying-electric-field-using-scilab-6-1-1-for-coupled-differential-equations/
https://en.wikipedia.org/wiki/Invariant_mass
https://en.wikipedia.org/wiki/Proton-to-electron_mass_ratio
https://en.wikipedia.org/wiki/Proton
https://royalsocietypublishing.org/doi/10.1098/rspa.1911.0037
https://aip.scitation.org/author/Janhunen%2C+Salomon
https://link.springer.com/article/10.1007/BF02084288#auth-A__N_-Kuftin
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electron velocity. In a magnetic field the force is 

always at right angles to the motion of the electron 

(Fleming's left-hand rule) and so it shows that the 

path of the electron is circular as shown in Figure 

2. Suppose the electron enters the field at an angle 

to the field direction then the path of the electron 

will be helical as shown in figure 3.  

The path of the electron in an electric field is given 

by the equation, y = [ Ev/2mdv2 ] x2  where V is the 

potential difference between the plates which are 

are aligned along the x direction and the electron 

enters the field at right angles to the field lines and 

x = vt then the force equation on the electron is 

given by the equation: F = eE = eV/d = ma. Mass 

and charge of the electron respectively; mass of the 

electron, m = 9.1 x 10-31 kg and the charge of the 

electron, e = 1.6 x 10-19 J. So above is the is the 

equation of a parabola since for a given electron 

velocity y is proportional to x2. Figure 1 reveals 

about the motion of a charged particle in a uniform 

magnetic field having magnitude F=qvBsinθ is 

acted where θ is the angle of velocity v with the 

magnetic field B. It was the general discussion 

about the electron path. Now we focused on the 

equation of motion for the path of electron 

obtained by the coupled differential solved 

analytically. Now ignoring the magnetic effect. 

Here we are taking into account only Electric-

field.  

3. Electron Dynamics: Here we have to study 

of the path of electron for a set of coupled 

differential equations given below 

𝑚
𝑑2𝑥

𝑑𝑡2 + 𝑒ℎ
𝑑𝑦

𝑑𝑡
= 𝑒𝐸  ……..(1) 

𝑚
𝑑2𝑦

𝑑𝑡2 + 𝑒ℎ
𝑑𝑥

𝑑𝑡
= 𝐵    ……..(2) 

with conditions  𝑥 =
𝑑𝑥

𝑑𝑡
= 𝑦 =

𝑑𝑦

𝑑𝑡
= 0. Where 

m is the mass of the electron, m = 9.1 x 10-31 kg 

and the electronic charge, e = 1.6 x 10-19 C; x & 

y are the position coordinates.  

Solution of the Equations:  Solving equations (1) 

and (2); multiplying (2) by 𝜉 (when magnetic field 

is zero) and adding to (1), we get  

𝑚 
𝑑2𝑥

𝑑𝑡2
+ 𝑚𝜉

𝑑2𝑦

𝑑𝑡2
+ 𝑒ℎ

𝑑𝑦

𝑑𝑡
− 𝑒ℎ𝜉 

𝑑𝑥

𝑑𝑡
= 𝑒𝐸 

𝑚 
𝑑2

𝑑𝑡2
(𝑥 + 𝜉𝑦) − 𝑒ℎ𝜉 

𝑑

𝑑𝑡
(−

𝑦

𝜉
+ 𝑥) = 𝑒𝐸…..(3) 

Let us choose a parameter such that x + 𝜉y = x −
𝑦

𝜉
  

on solving we get 𝜉 = ± 𝑖. Once we put x + 𝜉y = ψ 

 in (3), we have  

𝑚
𝑑2ψ

𝑑𝑡2  − 𝑒ℎ𝜉
𝑑ψ

𝑑𝑡
= 𝑒𝐸  

  
𝑑2ψ

𝑑𝑡2 − ω𝜉
𝑑ψ

𝑑𝑡
=  

𝑒𝐸

𝑚
       …..(4)  

Figure 1: The path of an electron in presence of 

magnetic field 

Figure 2: Circular path of the electron 

Figure 3: Helical motion of the electron 
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The complete solution is given by 

ψ = 𝑐1 +  𝑐2 𝑒ω𝜉𝑡   - 
𝐸𝑡

ℎ𝜉
  as x + 𝜉y = ψ then we can 

write  

x + 𝜉y =  𝑐1 +  𝑐2 𝑒ω𝜉𝑡   - 
𝐸𝑡

ℎ𝜉
   ……..(5)  

In equation (5) putting the value of 𝜉 𝑖. 𝑒. 𝑖 =
−𝑖 , 𝑤𝑒 𝑔𝑒𝑡 

x + 𝑖y =  𝑐1 +  𝑐2 𝑒𝑖ω𝑡   - 
𝐸𝑡

𝑖ℎ
  ……..(6)  

x - 𝑖y =  𝑐3 +  𝑐4 𝑒−𝑖ω𝑡  + 
𝐸𝑡

𝑖ℎ
  ……..(7)  

The differentiation of above equations (6) and (7) 

takes form 

 
𝑑𝑥

𝑑𝑡
 + 𝑖

𝑑𝑦

𝑑𝑡
 = 𝑐2 𝑖ω𝑒𝑖ω𝑡 

+ 
𝑖𝐸

ℎ
 ……..(8) 

𝑑𝑥

𝑑𝑡
 - 𝑖

𝑑𝑦

𝑑𝑡
 = - 𝑖ω𝑐4𝑒−𝑖ω𝑡 

- 
𝑖𝐸

ℎ
 ……..(9) 

Now using initial conditions, x = y = 
𝑑𝑥

𝑑𝑡
 = 

𝑑𝑦

𝑑𝑡
 = 0 

when t = 0 in (6), (7), (8) and (9), we get  

𝒙 =  
𝑬

𝒉𝛚
 [𝟏 −  𝐜𝐨𝐬(𝛚𝒕 )] ……(12)       

𝒚 =  
𝑬

𝒉𝛚
 [𝛚𝐭 − 𝐬𝐢𝐧(𝛚𝒕 )] ……(13)       

Equations (12) and (13) represents the equations of 

the path for electron for given set of coupled 

differential equations. Further we solve the 

equations using Laplace transform. Let the 

Laplace transform of x be ℒ [x]= �̅� and ℒ [y]= �̅� .  

ℒ [
𝑑2𝑥

𝑑𝑡2] = p2 ℒ [x] – p x (0) - x٠(0) and 

 ℒ [
𝑑2𝑦

𝑑𝑡2 ] = p2 ℒ [y] – p y (0) - y٠(0) 

ℒ [
𝑑𝑥

𝑑𝑡
] = p�̅� - x (0) and  ℒ [

𝑑𝑦

𝑑𝑡
] = s𝑝 - y (0) 

p2�̅� – px (0) - x٠(0) + 
𝑒ℎ

𝑚
[𝑝�̅� − 𝑦(0)] =

𝑒𝐸

𝑚𝑝
  

                                                     ---- (14) 

p2�̅� – p y (0)-y’ (0) - 
 𝑒ℎ

𝑚
[𝑝�̅� − 𝑥(0)] = 0              

--- (15) 

Now use the given conditions x (0) = 0; x٠(0) =0   

& 𝑦(0)= 0; y٠(0) =0 above equations takes form 

p2�̅� + 
𝑒ℎ

𝑚
[𝑝�̅�] =

𝑒𝐸

𝑚𝑝
                            ----- (16)                                                          

and  p2�̅� – 
𝑒ℎ𝑝�̅�

𝑚
 = 0               ----- (17) 

Solving above equations for x and y we get  

�̅� = - (
𝑒𝐸

𝑚
)

1

𝑝(𝑝2+(
𝑒ℎ

𝑚
)2)

  and 

𝑦 ̅ = - (Eh)(
𝑒

𝑚
)2 1

𝑝2(𝑝2+(
𝑒ℎ

𝑚
)2)

    

Now the result given below has been solved by 

using partial fractions. 

x = - (
𝑒𝐸

𝑚
){𝐿−1[−(

𝑚

𝑒ℎ
)2.

1

𝑝
]+ 𝐿−1[(

𝑚

𝑒ℎ
)2.

𝑝

𝑝2+(
𝑒ℎ

𝑚
)2

]}                                

------ (18) 

y =  
𝐸

ℎ
[𝑡 −

𝑚

𝑒ℎ
sin (

𝑒ℎ

𝑚
)𝑡]      ----- (19) 

Put ω = 
𝑒ℎ

𝑚
  in above equations we have 

x =  
𝑬

𝒉𝛚
[𝟏 − 𝐜𝐨𝐬(𝛚𝒕)]    ---- (20) 

y = 
𝑬

𝒉𝛚
[𝛚𝒕 − 𝐬𝐢𝐧(𝛚𝒕)]  ----- (21) 

 Equations (20) and (21) represents the equations 

of the path for electron for given set of coupled 

differential equations. On comparing four 

equations (12) & (20); (13) and (21) are found to 

be same. Next we analyzed the same equations 

using Scilab software. 

4. Results: Figure 4 is the variation of Electric  

Figure 4: Shows the variation of path ‘E’ Vs 

‘r2’ (a) ω=π/2; (b) ω=π/3 
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field, E and r2 where r = √x2 + y2. Here it is 

observed that E increases with respect to r at some 

frequencies ω=π/2 & ω=π/3. Electric field is 

proportional to distance. When r is very high then 

a saturation is found for all the curves for limited 

time. The sharp result comes out when ω=π/2 for 

large ‘t’ the plot line converts into a tedious path 

like scattering of particles. Green line is the curve 

between ‘r2’ Vs ‘modulus of E’. 

Figure 5(a)-5(d) represents electron trajectory in 

the x – y plane. The plots of both solutions are 

against one another at a constant value of field, 

increasing in equal steps and the frequency is also 

increasing from 5(a)-5(d). The plots show the 

variation of x and y for a fixed value of time for 

each. Mathematically it is noticed from the graph 

that y is multivalued function, angular frequency 

doesn’t matter in this case here. So it is observed 

that along y direction the electrons gains more 

energy or having more potential with increasing 

frequency and the oscillations under some 

conditions are found to be much higher. The 

Hamiltonian as well as the momentum and kinetic 

energy attains high value in y direction. The 

classical theoretical aspects are also valid here. If 

we use variational process, we can restrict the 

comparison of all paths involving no violation of 

conservation of energy and momentum also the 

Hamiltonian, H will be conserved.  

Figure 6(a)-6(c) represents 3D electron trajectory. 

The 3-D trajectory has been studied with the help 

of latest Scilab software for particular values of 

angular frequencies ω=π/2, ω=π/3 and ω=π/4. 3-D 

trajectory depends upon the angular frequency; in 

the study it has been found that on decreases the 

angular frequency there is increment in trajectory 

loops and the separation between them becomes so 

close and looks like spiral or human ribs shape. 

The figure formed from the trajectory is found to 

be symmetry with respect to x and y and also about 

y=x at some particular angular frequencies. 

Scilab Coding: Scilab programming/coding 

done successfully. The coding of Scilab for figure 

4 follows as:  

clc; 
funcprot(0); 
e=(1.6)*1e-19; 
h=(6.6)*1e-34; 
m=(9.1)*1e-31; 
w=%pi/2; 
t=linspace(0,1.3,500); 
E=sin(ws.*t); 
x=(E/(h.*w)).*(1-cos(w.*t)); 
y=(E/(h.*w)).*(w.*t-sin(w.*t)); 
r=sqrt(x.^2+y.^2); 
plot(r.^2,abs(E),r.^2,abs(E.^E),r.^2,abs(E.^3),'thickness',
2) 
xstring(5e34,-.5,["(a)"],0,1) 
xlabel('$\boldsymbol{r^2\rightarrow}\$','fontsize',4) 
ylabel('$\boldsymbol{E\rightarrow}\$','fontsize',3) 
legend('$\boldsymbol{r^2...Vs...mod 
E\$','$\boldsymbol{r^2...Vs...mod 
E^2\$','$\boldsymbol{r^2...Vs...mod E^3\$',4) 
 
title('$\boldsymbol\text\omega=\pi/2$','fontsize',4) 
 

clc; 
funcprot(0); 

e=(1.6)*1e-19; 
h=(6.6)*1e-34; 
m=(9.1)*1e-31; 
w=%pi/3; 
t=linspace(0,1.3,500); 
E=sin(w.*t); 
x=(E/(h.*w)).*(1-cos(w.*t)); 

Figure 5: Shows the variation of path y Vs x. For 

(a) ω=π/2; (b) ω=π; (c) ω=3π/2; and (d) ω=2π.] 

Figure 6: Shows the variation of path y Vs x. For (a) 

ω=π/2; (b) ω=π; (c) ω=3π/2. 
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y=(E/(h.*w)).*(w.*t-sin(w.*t)); 
r=sqrt(x.^2+y.^2); 
plot(r.^2,abs(E),r.^2,abs(E.^E),r.^2,abs(E.^3),'thickness',
2) 
xstring(5e34,-.5,["(a)"],0,1) 
xlabel('$\boldsymbol{r^2\rightarrow}\$','fontsize',4) 
ylabel('$\boldsymbol{E\rightarrow}\$','fontsize',3) 
legend('$\boldsymbol{r^2...Vs...mod 
E\$','$\boldsymbol{r^2...Vs...mod 
E^2\$','$\boldsymbol{r^2...Vs...mod E^3\$',4) 
title('$\boldsymbol\text\omega=\pi/3$','fontsize',4) 
 
Scilab programming/coding done successfully. The coding of 

Scilab for figure 5 follows as 

clc; 
funcprot(0); 
e=(1.6)*1e-19; 
h=(6.6)*1e-34; 
m=(9.1)*1e-31; 
w=%pi/2; 
E=1; 
t=linspace(0,10,100); 
x=(E/(h.*w)).*(1-cos(w.*t)); 
y=(E/(h.*w)).*(w.*t-sin(w.*t)); 
subplot(2,2,1) 
plot(x,y,'thickness',1) 
xstring(1e33,5.9e34,["(a)"],0,1) 
xlabel('$\boldsymbol{x\rightarrow}\$','fontsize',3) 
ylabel('$\boldsymbol{y\rightarrow}\$','fontsize',3) 
title('$\boldsymbol\text\omega=\pi/2$','fontsize',4) 
w=%pi; 
E=2; 
t=linspace(0,5,100); 
x=(E/(h.*w)).*(1-cos(w.*t)); 
y=(E/(h.*w)).*(w.*t-sin(w.*t)); 
subplot(2,2,2) 
plot(x,y,'r','thickness',1) 
xstring(1e33,1.2e35,["(b)"],0,1) 
xlabel('$\boldsymbol{x\rightarrow}\$','fontsize',3) 
ylabel('$\boldsymbol{y\rightarrow}\$','fontsize',3) 
title('$\boldsymbol\text\omega=\pi$','fontsize',4) 
w=3*%pi/2; 
E=3; 
t=linspace(0,5,100); 
x=(E/(h.*w)).*(1-cos(w.*t)); 
y=(E/(h.*w)).*(w.*t-sin(w.*t)); 
subplot(2,2,3) 
plot(x,y,'m','thickness',1) 
xstring(1e33,1.7e35,["(c)"],0,1) 
xlabel('$\boldsymbol{x\rightarrow}\$','fontsize',3) 
ylabel('$\boldsymbol{y\rightarrow}\$','fontsize',3) 
title('$\boldsymbol\text\omega=3\pi/2 $','fontsize',4) 
w=2*%pi; 
E=4; 
t=linspace(0,5,100); 
x=(E/(h.*w)).*(1-cos(w.*t)); 
y=(E/(h.*w)).*(w.*t-sin(w.*t)); 
subplot(2,2,4) 
plot(x,y,'c','thickness',1) 
xstring(1e33,2.5e35,["(d)"],0,1) 
xlabel('$\boldsymbol{x\rightarrow}\$','fontsize',3) 
ylabel('$\boldsymbol{y\rightarrow}\$','fontsize',3) 
title('$\boldsymbol\text\omega=2\pi$','fontsize',4) 
Scilab programming/coding done successfully. The coding of 

Scilab for figure 6 follows as  

clc; 
funcprot(0); 
e=(1.6)*1e-19; 
h=(6.6)*1e-34; 
m=(9.1)*1e-31; 
w=%pi/2; 
t=linspace(0,50,5000); 
E=sin(w.*t); 
x=(E/(h.*w)).*(1-cos(w.*t)); 
y=(E/(h.*w)).*(w.*t-sin(w.*t)); 
r=sqrt(x.^2+y.^2); 
comet3d(t,x,y) 
xstring(5e34,-.5,["(a)"],0,1) 
legend('3-D Trajectory') 
title('$\boldsymbol\text\omega=\pi/2$','fontsize',4) 
 
clc; 
funcprot(0); 
e=(1.6)*1e-19; 
h=(6.6)*1e-34; 
m=(9.1)*1e-31; 
w=%pi/3; 
t=linspace(-50,50,10000); 
E=sin(w.*t); 
x=(E/(h.*w)).*(1-cos(w.*t)); 
y=(E/(h.*w)).*(w.*t-sin(w.*t)); 
r=sqrt(x.^2+y.^2); 

comet3d(t,x,y) 
xstring(5e34,-.5,["(a)"],0,1) 
legend('3-D Trajectory') 
title('$\boldsymbol\text\omega=\pi/3$','fontsiz
e',4) 
 
clc; 
funcprot(0); 
e=(1.6)*1e-19; 
h=(6.6)*1e-34; 
m=(9.1)*1e-31; 
w=%pi/4; 
t=linspace(-400,400,10000); 
E=sin(w.*t); 
x=(E/(h.*w)).*(1-cos(w.*t)); 
y=(E/(h.*w)).*(w.*t-sin(w.*t)); 
r=sqrt(x.^2+y.^2); 
comet3d(t,x,y) 
xstring(5e34,-.5,["(a)"],0,1) 
legend('3-D Trajectory') 
title('$\boldsymbol\text\omega=\pi/4$','fontsiz
e',4) 

5. Conclusions: The motion of the electron is 

determined for a set of coupled linear differential 

equation of second order under certain conditions 

with an electric field. The opted methods give the 

same result and verified with the software. The 

presence if the electric field is considered constant 

as well as in trigonometric form; the path of the 

electron is analyzed and the trajectories of the 

electron and the variation of r with E have been 

studied. Scilab software 6.1.1 used throughout the 

plotting and the problem is analysed with it. The 
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importance of the software is that it gives more 

accurate study of trajectories, variation with 

distance and symmetry with angular frequencies. 

Using Scilab the amplitude/oscillations under 

given conditions are found to be much higher for 

path, y. The momentum and kinetic energy found 

to be high in y direction as compared to x direction. 

3-D trajectory depends upon the angular frequency 

and found to be symmetry with respect to x and y 

and also about y=x.  
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